

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Source Code Module Hart Master C++ 7.6 / 20.10.2023 Page 1 of 8

Hart Master C++ 7.6

Source Code Module

The package includes all modules needed to represent the Hart protocol for a master. The

package is written in standard C++ and does not use a direct connection to a system

environment. Data link layer, application layer and network management of the Hart

protocol are implemented. The connection to the outside occurs via three interfaces: OSAL,

USER and HAL. Special properties are:

• No external dynamic memory management. The

amount of reserved RAM remains constant.

• The number of objects is determined at compile

time and startup.

• No operating system is required to integrate the

software. Timers and serial interrupts are enough.

• The user interface (USER) is very close to the

interface of the existing Hart DLL in HartTools 7.6.

• With the exception of the timer and the UART

interrupt, there are no callbacks to registered

functions.

e.g. Timer Interrupt e.g. UART Interrupt

Data Link Layer

On2msCycle OnCharReceived
OnTxEnd DisableReceieiver

StartTx

EnableReceieiver

GetConfiguration
SetConfiguration

Start
Stop

GetStatus

Network-

Manage-

ment

Service Handler Data Buffers

Manager

User Processing Layer (User Application)

GetResponse
PutRequest

GetCyclicData

GetConfirmation
GetCyclicData

UserRead
UserWrite

GetParameter
SetParameter

Enable/Disable GetServiceStatus

Connect
DoCommand

User Interface

User Interface

Time Critical Area
(2 ms)

Application Timing Area
(50 ms)

OnCarrierDetected
OnGapTimeOut

RunServiceHandler

Medium Access Control

Application Interface

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Overview Hart Master C++ 7.6 / 20.10.2023 Page 2 of 8

Contents

Hart Master C++ 7.6 .. 1

Source Code Module ... 1
Overview ... 2

Implementation Considerations ... 2
HAL (Hardware Abstraction Layer) .. 2
Architecture ... 3

Public Functions ... 5
System Requirements .. 6
Prerequisites ... 7

Visual Studio 2019 ... 7
Visual Studio Code ... 7

Implementation Targets .. 7
Windows Computer .. 7
Migration to Linux .. 7
Implementation on nRF52840.. 7

Appendix .. 8
Abbreviations ... 8

Overview

Details for the Hart Protocol are provided via the following link:

https://www.fieldcommgroup.org/technologies/hart.

Implementation Considerations

Microcontrollers which are used today for HART devices are at

least 16 Bit microcontrollers. Otherwise the complexity of the

measurement and number of parameters could not be

managed.

The amount of memory is always critical because software kind

of behaves like an ideal gas. It uses to fill the given space.

Nevertheless, the coding of the Hart Master was done as

carefully as possible regarding the amount of flash memory and

RAM.

The Hart Protocol requires a strict timing specially for burst

mode support and the primary and secondary master time slots.

To provide the optimum transparency to the user to allow all

kinds of debugging and to give the opportunity to optimize code

in critical sections, the Hart Master Software is not realized as a

library but delivered as source code.

HAL (Hardware Abstraction Layer)

A Hardware Abstraction Layer is needed to design the interface

of a software component independent from the hardware

platform. In this very small interface of the Hart master a

distinction of HAL and OSAL was not made. Therefore only an

 Low amount of memory.

 The user needs source

code.

 OSAL is including the

HAL.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/technologies/hart

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Overview Hart Master C++ 7.6 / 20.10.2023 Page 3 of 8

Operating System Abstraction Layer is defined which is covering

all the needs of an appropriate HAL.

Architecture

You can find a graphic representation of the architecture on the

cover page of this datasheet.

The software is mainly divided into two areas. One is the time

critical part, which is needed to meet the requirements of the

time controlled dual master protocol of Hart. The other is the

area were the application software is working, which is far less

time critical.

The figure above is clearly showing also two user interfaces.

There is a user interface which is connecting the Hart Master

software to a timer control interrupt and a UART interrupt which

are used for the 'fast' service procedures. Most of the Hart

protocol functionalities are solved in the timer part, which may

run on interrupt level. There are arguments for and against this

kind of implementation but you ever end up at a point that the

incoming frame has to be processed as quickly as possible. So

why not spending a few microseconds more once the program

has already reached the interrupt level. The Hart protocol is not

very complex but it needs to be processed fast enough to catch

a precise timing.

The load produced by the implementation is not very high.

Because the communication runs with a speed of 1200 bit/s

usually there is nothing to do in the 1 ms cycle than to keep

track of the timing. Only every 10 ms - if a frame is coming in -

a character has to be processed. The processing is done in an

incremental way thus not implying the execution of too much

instructions.

The split between the time critical area and the user application

is done within the Data Link Layer and the so called Network

Management. However, the user have not to take any special on

these separations except the provision of a few OSAL services

for Locking out other tasks. There is an 'atomic' lock out level

which has to lock out the interrupts of the Data Link Layer as

well as concurrent processes. The other level is 'critical section'

which is locking out concurrent processes. More details are

described in another chapter of this document.

The interface to the user's application is located on top of the

User Data Processing Layer (User Application). Functions with

names starting with 'User' are function which are expected by

the communication stack to be provided by the user. Another

set of functions are called by the user's software on demand.

There is no restriction when these functions may be called. The

functions for the user are neutral and does not show that they

are used for HART communications.

 The software

architecture is

optimized for systems

with very few resources.

 The top level user

interface is

communication

independent.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Overview Hart Master C++ 7.6 / 20.10.2023 Page 4 of 8

There are a few data objects which are required for Hart

protocol and which may be set by the user or an external Hart

master. These are such as the tag name and the address. If e.g.

the address of the Hart slave is changed through the network

the Network-Management will call the user layer to store the

data in the NV-memory. If the address is changed through the

local HMI of the Hart device, the user layer calls Network-

Management of Hart to advise the Data Link Layer protocol to

work with the new address. The function used for this setting is

SetParameter.

In the above figure the parts of the Hart Master 7.6 are shown

in yellow color while the user parts are marked with blue. A

major part is the block called User Data and Command

Description. This block is binding the user data parts to the Hart

commands and or function provided by the user. This is finally a

set of tables stored in the flash memory of the device.

The figure is also showing a set of functions between the

command interpreter the network management and the data

link layer. These functions may be used if the developer decides

to use only the data link layer by providing its own command

interpreter and network management.

 The Data Link Layer is

an independent piece of

software.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Public Functions Hart Master C++ 7.6 / 20.10.2023 Page 5 of 8

Public Functions

Category Name Description

Data Link Layer

DLL Initialization Init Initializes the protocol layer. This has to be the first call into the

Hart Master Data Link Layer.

DLL Operation GetConfiguration Returns the configuration from the protocol layer.

SetConfiguration Sets the configuration for the protocol layer.

Start Starts the Data Link Layer protocol, enables the receiver.

Stop Stops the Data Link Layer protocol. disables the receiver.

GetStatus Return the status of the Data Link Layer.

DLL MAC Access

User Interface

On2msCycle This routine has to be called on every two milliseconds. It run the

HART protocol including mechanism for sending automated

responses and the handling of burst frames. May be called by
interrupt.

OnCharReceived Has to be called if a character was received. May be called from

interrupt.

OnTxEnd Has to be called if transmitting octets is completed. This call has

to be done after the stop bit of the last byte of a stream was sent.

The function may be called from interrupt.

StartTx A request to the user part of the software for starting the
transmission of a byte stream. This function is called from inside

On2msCycle.

DisableReceiver A request to the user part of the software for switching off the

receiver. This function is called from inside On2msCycle.

EnableReceiver A request to the user part of the software for switching on the

receiver. This function is called from inside On2msCycle.

OnGapTimeout This function call is optional. If the user has enough timer

resources he may implement his own more precise Gap Time Out.
This would allow more jitter on the 2 ms cycle.

OnCarrierDetected This function call is optional. If the user's hardware is in able to

detect the carrier this can be used as a better indication for frame

start and frame end than the gap time out.

DLL APP Iface GetRequestData Returns the latest incoming request (usually a Hart command).
This function is called if the user software has time.

SetResponseData Called from the user software (the command interpreter) to place
the response to a command.

SetCyclicData Called from the user software. Used to set cyclic data for the burst

frames. The Data Link Layer is managing to send the data if the

protocol is allowing or requiring it.

Table 1: List of Data Link Layer Functions

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

System Requirements Hart Master C++ 7.6 / 20.10.2023 Page 6 of 8

User Data Processing Layer (User Application)

Command

Interpreter

Read This function is called from the Hart Master software to read a
parameter which is described in the User Data and Command

Description.

Write This function is called from the Hart Master software to write a

parameter which is described in the User Data and Command

Description.

HandleCommand This function is called from the Hart Master if a command was
received, which could not be handled by the Hart Master service

handler.

PutCyclicData The user layer calls this function to update the cyclic data (e.g.

measurement values).

PutDeviceStatus The user layer calls this function whenever the device status has

changed.

RunServiceHandler This function is used to execute the service handler from

application level. It has to be called in a cycle of about 50 ms ..
200 ms.

Network

Management

Read See description above.

Write See description above.

SetParameter This functions is provided for the user layer to provide settings

like slave address or tag name.

GetParameter This function is provided for the user layer to get settings.

Enable Enables or disables the Hart Protocol in the device.

Init Initializes the master stack including the command handler.

Table 2: List of User Layer Functions

System Requirements

It is difficult to estimate the system requirements for targets

based on different micro controllers and different development

environments. The following is therefore giving a very rough

scenario for the target system resources.

Item Requirement/Size Comment

RAM 64k Depends very much on addressing structure of the controller

and the used compiler and linker.
ROM (Flash) 100k

Timing 2 ms Timer interrupt 2 ms is the minimum requirement, 1 ms would be much

better.

50 ms cyclic all from

task level

This is needed to run the command interpreter.

I/O UART and Hart MODEM

Rx and Tx functions

Carrier detection would be helpful but is not required.

System Simple math +-*/

memcpy()

memset()

memcmp()

Only a few standard library functions are required. There is

no special need for multi tasking, messaging or semaphores.

1 ms timing

resolution

Table 3: Embedded System Requirements

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Prerequisites Hart Master C++ 7.6 / 20.10.2023 Page 7 of 8

Prerequisites

The 'normal' project under VS 2019 can be used immediately.

However, a GNU compiler is required for the make projects.

Visual Studio 2019

I used the following version of Visual Studio 2019:

Further installations for VS 2019 are not required.

Visual Studio Code

I used the following version of Visual Studio 2019:

The following extensions are required: tbd.

Implementation Targets

Windows Computer

Tbd.

Migration to Linux

I think, porting to a Raspberry Pi 4 would be a

good idea for this purpose. Of course, the

MainLoop module must then be further abstracted

to the Linux console, and two more files are added

to the special files marked ‘Win32’.

These new files will be marked as ‘Linux’.

Implementation on nRF52840

Finally, porting to an nRF52840 would show

whether the concept delivers what it promises.

A serial interface would be used as the connection,

which could be replaced by a Bluetooth connection

in a further modification.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Appendix Hart Master C++ 7.6 / 20.10.2023 Page 8 of 8

Appendix

Abbreviations

Abbreviation Description

HCF Hart Communication Foundation

DLL Windows: Dynamic Link Library

OSI-ISO: Data Link Layer

HAL Hardware Abstraction Layer

HART Highway Addressable Remote Transducer
See also:

http://en.wikipedia.org/wiki/Highway_Addressable_Remote_Transducer_Protocol

HMI Human Machine Interface

ISO International Standards Organisation

MODEM MOdulator DEModulator

NV-memory Non-Volatile memory

OSAL Operating System Abstraction Layer

OSI Open Systems Interconnection

UART Universal Asynchronous Receiver Transmitter

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

