

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implemented Services Hart Master C++ 8.0 / 14.2.2025 Page 1 of 15

Hart Master Stack C++ 8.0

Technical Data Sheet

C++ Source Code for an Embedded Firmware Module

with the following Properties

• No external dynamic memory management. The

amount of reserved RAM remains constant.

• The number of objects is determined at compile

time and startup to avoid memory leaks.

• Simple asynchronous user interface to encapsulate

the time-critical part.

• Implements the Uart protocol and Hart Ip.

The implementation is based on the Hart Documents in:

HART Communication Protocol Specification, HCF_SPEC-13, FCG TS20013 Revision 7.09,

Release Date: 06 January 2023

Details for the Hart Protocol are provided via the following link:

https://www.fieldcommgroup.org/technologies/hart.

Hart Master Stack C++ 8.0 .. 1

Introduction... 2
Implemented Services ... 2
Architecture ... 2

Hart Master C++ Code ... 3
User Interface .. 3

Public Functions .. 3
Data Interface .. 6

Coding Considerations ... 6
Hardware Abstraction .. 7
List of Files ... 9
System Requirements .. 10
Coding Conventions ... 10

Visual Studio 2022 ... 11
Test Environment .. 11

Prerequisites .. 11
Directory Structure .. 11
Project Structure ... 12

Getting Started ... 12
Test Interface ... 13

Appendix .. 14
Internet Links ... 14
Download Location .. 14
Legal Issues ... 15

Conformity ... 15
Copyright ... 15
No Warranty ... 15

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/technologies/hart

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implemented Services Hart Master C++ 8.0 / 14.2.2025 Page 2 of 15

Introduction

Implemented Services
While a Hart slave typically executes Hart commands and sends

cyclic data in the form of bursts, a Hart master usually has the

task of retrieving Hart commands and processing the slave's

responses. We are not talking about specific commands here,

but rather about services that are there for all commands.

Two types of services are implemented for this purpose. With a

blocking service, the called function waits until a response is

received.

If a service is executed non-blockingly, the called function

returns a handle that the calling program can use later to check

whether the service has finished.

The cyclic data is a special feature, because it is sent by the

slave on the hard level without a request. The handling of cyclic

data has not yet been implemented in the existing code, but can

be quickly retrofitted for customers who license the firmware.

Architecture

The package Portable Hart Master includes all modules needed

to represent the master part of the Hart protocol. The package

is written in standard C++ and does not use any direct

connection to a system environment. Data link layer, application

layer and network management of the Hart protocol are

implemented. The connection to the outside occurs via three

interfaces: The User Interface, a Time Trigger and the HAL to

the Uart interface.

Hart Uart and

Hart Ip Master

Service Handler

HAL

OSAL & C++ to C# Test Adapter

User Interface

C++ C#

‘White Box’ Test Software

1 ms
time
tick

Portable
Hart
Master

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

User Interface Hart Master C++ 8.0 / 14.2.2025 Page 3 of 15

In order to make the source code of the Hart Kernel visible, a

simulation of an application is available. The simulation is

carried out by integrating the Hart Kernel into a Windows library

and controlling it via a 'Test Adapter'. This makes it possible to

actually inspect the source code of the implementation at

runtime using Visual Studio 2022.

Hart Master C++ Code

User Interface

Public Functions
The following functions are realized in the module

HartS_UartIface.cpp in the class CUartMaster. In the DLL

interface for the test client the function names are preceeded by

BAHAMA_.

Declaration Description

Operation

EN_Bool OpenChannel(
 TY_Word port_number_,
 EN_CommType type_);

The function allocates the selected com port if possible and starts its own working
thread for accessing the Hart services. The port_number_ is limited to the range of

1 .. 254. The selected communication type (type_) should be UART in this version

of the paket. The function returns TRUE8 if successful.
In the present implementation only a single channel is possible. Thus no channel

handle is required.

void CloseChannel(); It is required to call this function at least when the application is terminating.

void GetConfiguration(
 TY_Configuration* config_);

The function copies the configuration data to a data structure provided by the
caller.

void SetConfiguration(
 TY_Configuration* config_);

The function is setting all details required for the configuration. The data is passed

in a structure provided by the caller.

Connection Services

SRV_Handle ConnectByAddr(
 TY_Byte address_,
 EN_Wait qos_,
 TY_Byte num_retries_);

Use command 0 with short address to get the connection information.

address_ 0 .. 63

qos_ NO_WAIT(0), WAIT(1)

num_retries_ 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.

SRV_Handle ConnectByUniqueID(
 TY_Byte* data_ref_,
 EN_Wait qos_,
 TY_Byte num_retries_);

Use command 0 with long address to get the connection information.

data_ref_ Pointer to a five byte array with the unique identifier

qos_ NO_WAIT(0), WAIT(1)

num_retries_ 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

Note: The function is not yet implemented.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

User Interface Hart Master C++ 8.0 / 14.2.2025 Page 4 of 15

SRV_Handle ConnectByShortTag(
 TY_Byte* data_ref_,
 EN_Wait qos_,
 TY_Byte num_retries_);

Use command 11 with global address to get the connection information.

data_ref_ Pointer to the byte array of a length of 6 packed ASCII bytes

qos_ NO_WAIT(0), WAIT(1)

numRetries 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.
Note: The function is not yet implemented.

SRV_Handle ConnectByLongTag(
 TY_Byte* data_ref_,
 EN_Wait qos_,
 TY_Byte num_retries_);

Use command 21 with global address to get the connection information.

data_ref_ Pointer to the 32 byte ISO Latin 1 string with the long tag
name

qos_ NO_WAIT(0), WAIT(1)

num_retries_ 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.
Note: The function is not yet implemented.

void FetchConnection(
 SRV_Handle handle_,
 TY_Connection* connection_);

Fills a structure provided by the caller with the connection information. hSrv is the

service handle which was returned by one of the connection functions.

Note: After a call of this function the driver is deleting the service. hSrv is no
longer valid after calling FetchConnection once.

Communication Services

SRV_Handle LaunchCommand(
 TY_Byte command_,
 EN_Wait qos_,
 TY_Byte* data_ref_,
 TY_Byte data_len_,
 TY_Byte* bytes_of_unique_id_);

Send a command in the range 0..255.

command_ Hart command (0..255) to be sent with the request

qos_ NO_WAIT(0), WAIT(1)

data_ref_ Pointer to a native byte array which is sent as payload data

data_len_ Length of the byte array

bytes_of_unique_id_ Five byte unique identifier of the addressed device

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.

Do command can be used for the support of most of the Hart services including all
user specific commands.

SRV_Handle LaunchExtCommand(
 TY_Word command_,
 EN_Wait qos_,
 TY_Byte* data_ref_,
 TY_Byte data_len_,
 TY_Byte* bytes_of_unique_id_);

Send a command in the range 0..65535.

command_ Extended Hart command (0..65535) to be sent with the

request

qos_ NO_WAIT(0), WAIT(1)

data_ref_ Pointer to a native byte array which is sent as payload data

data_len_ Length of the byte array

bytes_of_unique_id_ Five byte unique identifier of the addressed device

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.
The extended command in Hart 6/7 is an extension which is using the byte

command 31 to carry a larger command within the data area. Therefore this

function was introduced more or less for the convenience of the HartDLL user.
The function is automatically taking care of the correct usage of command 31.

Note: The function is not yet implemented.

EN_Bool IsServiceCompleted(
 SRV_Handle service_);

Returns TRUE8 if the service (service_) was completed.

void FetchConfirmation(
 SRV_Handle service_,
 TY_Confirmation* conf_data_);

Fills a structure provided by the caller with the service results information such as
the response codes and the response data (if any).

Encoding

void PutInt8(
 TY_Byte data_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Insert an integer 8 into the byte array buffer pointed to by data_ref_ starting at the

position offset_.

void PutInt16(
 TY_Word data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 16 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

User Interface Hart Master C++ 8.0 / 14.2.2025 Page 5 of 15

void PutInt24(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 24 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void PutInt32(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 32 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void PutInt64(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 64 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutFloat(
 TY_Float data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert a single precision IEEE 754 float value into the byte array buffer pointed to
by data_ref_ starting at the position offset. Start with the most significant byte if

endian is MSB_FIRST(0), which is the Hart standard.

void PutDFloat(
 TY_DFloat data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert a double precision IEEE 754 float value into the byte array buffer pointed to
by dataRef starting at the position offset. Start with the most significant byte if

endian is MSB_FIRST(0), which is the Hart standard.

void PutPackedASCII(
 TY_Byte* asc_string_ref_,
 TY_Byte asc_string_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Insert a string (asc_string_ref_) of the length of asc_string_len_ in packed ASCII

format into the byte array buffer pointed to by data_ref_ starting at the position

offset_. It is recommented that asc_string_len_ is an ordinary multiple of 4.

void PutOctets(
 TY_Byte* stream_ref_,
 TY_Byte stream_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a number of stream_len_ bytes into the byte array buffer pointed to by

data_ref_ starting at the position offset_.

void PutString(
 TY_Byte* string_ref_,
 TY_Byte string_max_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a string from string_ref_ to data_ref_. The actual number of characters

stored cannot be greater than string_max_len_. If the string contains a null, the last
character saved is a null character if this does not exceed the string_max_len_

limit.

Decoding

TY_Byte PickInt8(
 TY_Byte offset_,
 TY_Byte* data_ref_);

Return the value of the byte in the byte array buffer pointed to by data_ref_ from
the position offset_.

TY_Word PickInt16(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 16 from the byte array buffer pointed to by

data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt24(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 24 from the byte array buffer pointed to by dtaRef

at the position offset. Assume that the most significant byte is the first if endian is
MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt32(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 32 from the byte array buffer pointed to by
data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_UInt64 PickInt64(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 64 from the byte array buffer pointed to by

data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_Float PickFloat(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the single precision IEEE754 number from the byte array

buffer pointed to by data_ref_ from the position offset_. Assume that the most

significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Coding Considerations Hart Master C++ 8.0 / 14.2.2025 Page 6 of 15

TY_DFloat PickDFloat(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the double precision IEEE754 number from the byte array

buffer pointed to by data_ref_ from the position offset_. Assume that the most

significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

void PickPackedASCII(
 TY_Byte* string_ref_,
 TY_Byte string_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Generate a string and copy it to the buffer pointed to by sb. The final string should

have the length string_len. The packedASCII source is a set of bytes in the byte
array buffer pointed to by data_ref_, starting at index offset_.

Note: The string length has to by a multiple of 4 while the number of

packedASCII bytes is a multiple of 3.

void PickOctets(
 TY_Byte* stream_ref_,
 TY_Byte stream_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a number (numOctets) of bytes from the byte array buffer pointed to by

dataSource to the user buffer pointed to by dataDestination.

void PickString(
 TY_Byte* string_ref_,
 TY_Byte string_max_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

The function reads a string from a buffer (data_ref_) starting at index offset_ and
stores the characters in string_ref_. The string buffer is read from until a null

character appears or string_max_len_ is reached. If possible, the null character is

also saved.

Internal

void FastCyclicHandler(TY_Word time_ms_); The function must be called by a separate task approximately every millisecond to

enable timing in the communication. The time_ms parameter indicates how many

milliseconds have passed since the last call.

Data Interface
Unlike a slave, a Hart master does not have a predefined data

structure whose elements are used to supply the commands.

But the Hart master still needs a few data for settings and

options. Therefore, some function calls pass data structures that

are specific to the call.

The definition of these structures can be found in the file

WbHartM_Structures.h in the directory .\02-Code\01-

Common\01-Interface.

Coding Considerations
Microcontrollers which are used today for HART devices are at

least 16 Bit microcontrollers. Otherwise the complexity of the

measurement and number of parameters could not be

managed.

The amount of memory is always critical because software kind

of behaves like an ideal gas. It uses to fill the given space.

Nevertheless, the coding of the Hart Master was done as

carefully as possible regarding the amount of flash memory and

RAM. This is not necessarily required with a Linux computer like

Raspberry Pi, but there are also simpler embedded systems.

The Hart Protocol requires a strict timing specially for burst

mode support and the primary and secondary master time slots.

To provide the optimum transparency to the user to allow all

kinds of debugging and to give the opportunity to optimize code

in critical sections, the Hart Master Firmware is not realized as a

library but delivered as source code.

 Low amount of memory.

 The user needs source

code.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hardware Abstraction Hart Master C++ 8.0 / 14.2.2025 Page 7 of 15

Hardware Abstraction
A Hardware Abstraction Layer is needed to design the interface

of a software component independent from the hardware

platform. In this very small interface of the Hart master a

distinction of HAL and OSAL was not made. Therefore only an

Operating System Abstraction Layer is defined which is covering

all the needs of an appropriate HAL.

Figure 1: Internal Module Architecture for the Uart Interface

The software is mainly divided into two areas. One is the time

critical part, which is needed to meet the requirements of the

time controlled dual master protocol of Hart. The other is the

area were the application software is working, which is far less

time critical.

In the diagram above, for some modules I have clearly marked

in which file you can find their implementation. This detail is

particularly important to me so that you don't think that the

diagram is pure theory. The file names are marked with blue

color.

The figure above is clearly showing also two user interfaces.

There is a user interface (OSAL/HAL) which is connecting the

Hart Master software to a timer control interrupt and a UART

interrupt which are used for the 'fast' service procedures. Most

e.g. Timer Interrupt e.g. UART Interrupt

Hart Layer 2

On1msCycle OnCharReceived
OnTxEnd Disable/Enable

StartTx

GetConfiguration
SetConfiguration

Start
Stop

GetStatus

Network-

Manage-

ment and

Monitor

Service Handler/

Hart Layer 7
Data Buffers

Manager

User Processing Layer (e. g. Test Application)

GetResponse
PutRequest

GetConfirmation
ReadMonData

GetConfig
SetConfig

Enable/Disable
GetServiceStatus

Connect/DoCommand

User Interface

OSAL/HAL

Time Critical Area
(1 ms)

Application Timing Area
(50 ms)

OnGapTimeOut

IsServiceCompleted

Medium Access Control

Application Interface

HartM_UartIface.cpp

BaTestHartMaster.exe

HMuartLayer2.cpp

HartChannel.cpp Monitor.cpp

OSAL.cpp WinSystem.cpp

 OSAL is including the

HAL.

 The software

architecture is

optimized for systems

with a few resources.

 Find the source code in

the figure above.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hardware Abstraction Hart Master C++ 8.0 / 14.2.2025 Page 8 of 15

of the Hart protocol functionalities are solved in the timer part,

which may run on interrupt level. There are arguments for and

against this kind of implementation but you ever end up at a

point that the incoming frame has to be processed as quickly as

possible. So why not spending a few microseconds more once

the program has already reached the interrupt level. The Hart

protocol is not very complex but it needs to be processed fast

enough to catch a precise timing.

The load produced by the implementation is not very high.

Because the communication runs with a speed of 1200 bit/s

usually there is nothing to do in the 1 ms cycle than to keep

track of the timing. Only every 10 ms - if a frame is coming in -

a character has to be processed. The processing is done in an

incremental way thus not implying the execution of too much

instructions.

The split between the time critical area and the user application

is done within the Data Link Layer and the so called Network

Management. However, the user have not to take any special on

these separations except the provision of a few OSAL services

for Locking out other tasks. There is an 'atomic' lock out level

which has to lock out the interrupts of the Data Link Layer as

well as concurrent processes. The other level is 'critical section'

which is locking out concurrent processes. More details are

described in another chapter of this document.

The interface to the user's application is located on top of the

User Data Processing Layer (User Processing Layer). The

functions that are made available in this interface are

implemented in the file HartM_UartIface.cpp and are described

in detail in the 'Public Functions' chapter.

There are a few data objects which are required for Hart

protocol and which may be set by the user or an external Hart

master. These are such as the tag name and the address. If e.g.

the address of the Hart slave is changed through the network

the Network-Management will call the user layer to store the

data in the NV-memory. If the address is changed through the

local HMI of the Hart device, the user layer calls Network-

Management of Hart to advise the Data Link Layer protocol to

work with the new address. The function used for this setting is

SetConfiguration.

In the above figure the parts of the Hart Master are shown in

yellow color while the user parts are marked with blue.

The figure is also showing a set of functions between the

command executor the network management and the data link

layer. These functions may be used if the developer decides to

use only the data link layer by providing its own command

executor and network management.

 The top level user

interface is at least

platform independent.

 The Data Link Layer is

an independent piece of

software.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

List of Files Hart Master C++ 8.0 / 14.2.2025 Page 9 of 15

List of Files
Category Name Description

02-Code

01-Common OSAL.h The Operating System Abstraction Layer is the top header. This is where the

central connection to the respective hardware or software platform takes

place. The header OSAL.h can only exist once, while a special
implementation (OSAL.cpp) exists for each specific hardware or software.

HartCoding.cpp/h This module combines functions that carry out the encoding and decoding of

communication primitives and data objects.

HartFrame.cpp/h The hart frame is a construct used to collect all information which is needed

to encode and decode data of so called service primitives like responses and

requests, which are finally octet streams.

HartLib.h Some classes for the definition of HART constants.

02-Code\01-Common

01-Interface HartMasterIface.cpp/h This is where the actual interface of the master implementation is located,

which would also have to be integrated into an embedded system. The
version with the DLL is only intended for testing under Windows.

You can find a detailed description of the provided functions in the 'Public

Functions' chapter.

WbHartM_Structures.h This file contains structures which are accessed at the outer interface as well

as in some modules in the master kernel.

WbHartM_TypeDefs.h This file contains type definitions which are used in all modules in the Hart
master kernel.

WbHartUser.h Limits applied by the user of the hart master software.

02-AppLayer HartChannel.cpp/h The channel manages a communication interface and the associated

propperties. The channel also uses services to conduct Hart commands.

03-Layer7 HartService.cpp/h In simple terms, a service executes a Hart command by passing a request to

Layer2 of the Hart protocol. In doing so, it returns a handle to the caller, with

which the calling program can check the status. A service is only considered
completed when the caller has read the response (e.g. FetchConfirmation).

04-Layer2

01-Uart

02-HartIp

HMuartLayer2.cpp/h and

HMipLayer2.cpp/h

This module implements the entire state machine of the Hart communication

protocol (CHartSM) including the state machines for sending (CTxSM) and

receiving (CRxSM) bytes.

HMuartMacPort.h and

HMipMacPort.h

The interface to the MAC port is relatively narrow and can be defined
generically. However, the implementation depends on the hardware and

software environment. That's why there is only a header at this point, while

the files HMuartMacPort.cpp and HMipMacPort.cpp can be found in the

OSAL area.

HMuartProtocol.cpp/h

and

HMipProtocol.cpp/h

This protocol layer controls the UART interface on the lower level and calls
the higher status machines when necessary (events). After this call, a ToDo

Part occurs, which in turn affects the Uart or HartIp interface.

Monitor.h The same applies to the Monitor function as to the MacPort. At this point

only the interface can be defined. The implementation takes place in the
specific part.

02-Code\02-Specific\01-WinDLL

01-Shell BaHartMaster.cpp/h The implementation for the calls to the Windows DLL is located here. In

practice, it is just a shell through which the functions in the CUartMaster

module are called.

02-OSAL

01-Uart

02-HartIp

HMuartMacPort.cpp and

HMipMacPort.cpp

The Execute method is called directly by the fast cyclic handler. This
basically drives all status machines in the Hart implementation. Here too, the

method is divided into an Event handler and a ToDo handler.

Monitor.cpp On the one hand, there are methods that are mapped to the interface of the

Windows DLL. In addition, there are a number of functions that are included

with the kernel functions. Since this module is so small overall, the methods
were not implemented in two different files.

OSAL.cpp The Operating System Abstraction Layer maps general functions to the

operating system.

WinSystem.cpp/h The OSAL concept cannot be applied to all functions that are required.

These functions were implemented in the code of this module.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

System Requirements Hart Master C++ 8.0 / 14.2.2025 Page 10 of 15

System Requirements
It is difficult to estimate the system requirements for targets

based on different micro controllers and different development

environments. The following is therefore giving a very rough

scenario for the target system estimated resources.

Item Requirement/Size Comment

RAM 64k Depends very much on the addressing structure of the

controller and the used compiler and linker.
ROM (Flash) 100k

Timing 1-2 ms Timer

interrupt

2 ms is the minimum requirement, 1 ms would be much

better.

50 ms cyclic call

from task level

This is needed to run the command interpreter.

I/O UART and Hart MODEM

Rx and Tx functions

Carrier detection would be helpful but is not required.

System Simple math +-*/

memcpy()

memset()

memcmp()

Only a few standard library functions are required. There is

no special need for multi tasking, messaging or semaphores.

1 ms timing

resolution

Table 1: Embedded System Requirements

Coding Conventions
Regarding this issue, I have only defined some formats that makes the scope of a label

clearer. It's just to make the code easier to read. This simple type of coding convention can

be used in both C++ and C#.

Snake Case

local_variable function_param_ m_member_var mo_member_object

Variable with local scope A function parameter has
a tailing underscore

Basic type private
member variable

Complex object member

s_member_var so_member_object

Basic type static private
member variable

Complex static object
member

Pascal Case

PublicVariable PublicObject AnyMethod

Variable with public or
internal scope

Object with public or
internal scope

No difference between
public and private

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Test Environment Hart Master C++ 8.0 / 14.2.2025 Page 11 of 15

Visual Studio 2022

Test Environment

There is only one project in this solution. The C++ Hart

Master is encapsulated in the HartMasterDLL project.

The solution is:

.02-Master\CppHartMaster-7.6.sln

Prerequisites

The solution must be opened with VS

2022. However, the community version

is sufficient. There are no further

requirements.

Directory Structure

The VS project for the Hart Master in C++

can be found in the directory:

.\02-Master\02-Code\02-Specific\01-WinDLL.

However, most of the C++ sources used are

located in the directory .\02-Code\01-

Common and its subdirectories.

The test software is only be found as

executable in the path 03-DebugBech. The

executable file BaTestHartMaster.exe and the

simulation DLL BaHartMaster.dll are both

located here.

When you start debugging the executable ist

started and loading the dll which is

respresenting the master device.

The following table shows how the individual files are distributed

among the directories.

01-Common

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Getting Started Hart Master C++ 8.0 / 14.2.2025 Page 12 of 15

02-Specific

Project Structure

The project structure is very similar to the directory structure.

Here too there is a strict distinction between generic area and

specific area.

The specific contents of the files are described in more detail in

the list below.

In contrast to the last published documentation, there is one

significant difference. The data link layer is divided into the

areas Uart and HartIp. The same applies to the Mac port in the

OSAL directory.

Getting Started
1. Unzip the file hart-master-slave-c++-demo-7.6.1.zip into

a directory of your choice. For getting the required

password please send an e-mail to:

HartTools@borst-automation.de.

2. 2. Open the solution .\02-Master\CppHartMaster-7.6.sln

with Visual Studio 2022. It has to be 2022. Other

versions are not supported yet. Unless you have 2022

not installed on your computer. You can download it from

microsoft.

https://visualstudio.microsoft.com/de/downloads/

3. The community version is sufficient enough and free of

charge.

4. Perform a 'Build All'.

5. Start debugging and investigate the source code

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
HartTools@borst-automation.de
https://visualstudio.microsoft.com/de/downloads/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Test Interface Hart Master C++ 8.0 / 14.2.2025 Page 13 of 15

Test Interface
The Windows test adapter is a software developed in C#. This

test adapter uses a Windows DLL in which the Hart Master is

embedded. The DLL implements the HART Protocol, whose

firmware was written in C++ for real time requirements.

Figure 2: Architecture of the Test Environment

The executable file for the test adapter is located at the

following location:

.\02-Master\03-Test\01-Windows\03-DebugBench\BaTestHartMaster.exe

When the executable file is started,

the Simulations DLL for the master is

automatically loaded.

The work surface is divided into two

halves. Settings are made or

commands are given in the upper

area, while the lower area is reserved

for a monitor that shows the

communication process.

Some basic settings are possible in

the Hart tab and a connection can be

established with the connected slave.

Screenshot 1: The Tab 'Hart'

If Hart IP is used, additional

parameters are needed to connect to

the slave. However, currently the

demo version works on localhost.

Screenshot 2: The Tab 'Hart Ip'

Test Adapter

(Test Client)

C#

PC Com Port

or Network
Modem

m

Hart

Slave

Hart Uart and

Hart Ip Master

C++

HAL

DLL (OSAL)

Reuseable Source

Code

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Internet Links Hart Master C++ 8.0 / 14.2.2025 Page 14 of 15

Hart commands are configured and

executed in the Commands tab.

Screenshot 3: The Tab 'Commands'

The 'Options/Test' tab contains

additional settings and allows the

execution of simple tests. Since you

have the source code, you can easily

modify the tests or add new ones.

Screenshot 4: The Tab 'Options/Tests'

The 'Slave Data' tab is intended to

read and display the data of a

connected slave.

Screenshot 5: The Tab 'Slave Data'

Appendix

Internet Links
Specification Documents
HART Specifications FieldComm Group

MODEMs
RS 232 Modem Microflex
USB Modem Endress + Hauser
Viator USB Modem Pepperl+Fuchs

Ethernet-APL
Advanced Physical Layer FieldComm Group
Ethernet - To the Field Ethernet APL Organisation
HART-IP Developer Kit FieldComm Group

Download Location
The software package described in this document can be

downloaded via the following link:

https://github.com/BorstAutomation/Hart-Master-Slave-8.0

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/hart-specifications
https://microflx.com/products/rs-232_hart?variant=792035143
https://www.de.endress.com/de/messgeraete-fuer-die-prozesstechnik/systemkomponenten-rekorder-data-manager/hart-usb-interface-commubox-fxa195?t.tabId=product-overview
https://www.pepperl-fuchs.com/germany/de/classid_1362.htm?view=productdetails&prodid=103586
https://www.fieldcommgroup.org/technologies/ethernet-apl
https://www.ethernet-apl.org/wp-content/uploads/2022/08/Ethernet-APL_Ethernet-To-The-Field_EN_FINAL_June-2021.pdf
https://store.fieldcommgroup.org/products/hart-ip
https://github.com/BorstAutomation/Hart-Master-Slave-8.0

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Legal Issues Hart Master C++ 8.0 / 14.2.2025 Page 15 of 15

Legal Issues

Conformity
This software package was developed to the best of my

knowledge and my belief. The basis is the specifications of the

Hart Communication Foundation in version 7.9.

However, it cannot be guaranteed that the software included in

this package meets the HCF specifications in all required

respects.

It is only possible to prove the conformity of this software after

the user has integrated the software into his device and

commissions HCF or a certified company to carry out this test.

Under no circumstances am I, Walter Borst, responsible for

carrying out such tests. Nor am I responsible for correcting any

deficiencies resulting from such a test.

Copyright
Copyright, Walter Borst, 2006-2024

Kapitaen-Alexander-Strasse 39, 27472 Cuxhaven, GERMANY

Fon: +49 (0)4721 6985100, Fax: +49 (0)4721 6985102

E-Mail: info@borst-automation.de

Home: https://www.borst-automation.de/

No Warranty
Walter Borst expressly disclaims any warranty for the software

package. This software package and related documents are

provided "As Is".

By using this software package, the user agrees that no event

shall Borst Automation or Walter Borst make responsible or

liable for damages whatsoever. This includes, without limitation,

damages for loss of business profits, loss due to business

interruption, loss of business information, or any other

pecuniary loss, arising out of the use of or the inability to use

this software package.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
mailto:info@borst-automation.de
https://www.borst-automation.de/

