

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Prerequisites Hart Master C++ 7.6 / 7.5.2024 Page 1 of 30

Hart Master C++ 7.6

Introduction

The package Portable Hart Master includes all modules needed to represent the master part

of the Hart protocol. The package is written in standard C++ and does not use any direct

connection to a system environment. Data link layer, application layer and network

management of the Hart protocol are implemented. The connection to the outside occurs via

three interfaces: The User Interface, a Time Trigger and the HAL to the Uart interface.

Special properties are:

• No external dynamic memory management. The amount of reserved RAM remains

constant.

• The number of objects is determined at compile time and startup.

• No operating system is required to integrate the software. Timers and serial

interrupts are enough.

• The user interface is very close to the interface of the existing Hart DLL in HartTools

7.6.

In order to make the source code of the Hart Kernel visible, a simulation of an application is

available. The simulation is carried out by integrating the Hart Kernel into a Windows library

and controlling it via a 'Test Adapter'. This makes it possible to actually inspect the source

code of the implementation at runtime using Visual Studio 2022.

The fact that the interface of the test software looks very similar to that of FrameAlyst is

because I used source code from the existing FrameAlyst.

Hart Uart

Master

Service Handler

HAL

OSAL & C++ to C# Test Adapter

User Interface

C++ C#

‘White Box’ Test Software

1 ms
time
tick

Portable
Hart
Master

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Prerequisites Hart Master C++ 7.6 / 7.5.2024 Page 2 of 30

Contents

Introduction ... 1

Visual Studio 2022 ... 3

Prerequisites ... 3
Development Directory Structure .. 3

C++ Hard Master Code ... 4

Implementation Considerations ... 4
HAL (Hardware Abstraction Layer) .. 4
Architecture ... 5
Implementation Details ... 7

Directory Structure .. 7
Project Structure ... 7
List of Files... 8
Public Functions ... 9

Embedded System Requirements ... 12

Windows Test Adapter ... 13

Overview ... 13
User Interface .. 13
Implementation Details ... 14

Directory Structure .. 14
Project Structure ... 15
List of Files... 15

Code Walkthrough ... 17

Establishing a Connection .. 17
Executing a Command.. 18

Additional Information ... 19

Type Definitions ... 19
Coding Conventions ... 19
Hart at a Glance ... 20
Data Types ... 27

Float IEEE 754 ... 27
Packed ASCII ... 28

Appendix .. 29

Internet Links .. 29
Abbreviations ... 29
Download Location .. 29
Legal Issues ... 30

Conformity ... 30
Copyright ... 30
Warranty Disclaimer .. 30

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Prerequisites Hart Master C++ 7.6 / 7.5.2024 Page 3 of 30

Visual Studio 2022

There are only two projects in the solution. The C++ Hart

Master is encapsulated in the HartMasterDLL project,

while the test software (with C# and .NET) can be found

in the TestCppMaster project.

The solution is in the path: .\BorstAutomation\EmbHart\

depending on which directory you copied the package to.

Prerequisites

The solution must be opened with VS

2022. However, the community version

is sufficient. There are no further

requirements.

Development Directory Structure

The source code for the Hart Master in C++

can be found in the directory:

.\02-Device\02-Specific\01-WinDLL\01-Hart\

01-Master

The test software is in the test area:

.\02-Device\03-Test\01-Windows\02-Apps\

01-Hart\01-TestClientMaster.

The 03-DebugBech directory is also important

in this context. The executable file

TestCppMaster.exe and the simulation DLL

BaHartMaster-7.6.dll are both located here.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation ConsiderationsHart Master C++ 7.6 / 7.5.2024 Page 4 of 30

C++ Hard Master Code

Details for the Hart Protocol are provided via the following link:

https://www.fieldcommgroup.org/technologies/hart.

Implementation Considerations

Microcontrollers which are used today for HART devices are at

least 16 Bit microcontrollers. Otherwise the complexity of the

measurement and number of parameters could not be

managed.

The amount of memory is always critical because software kind

of behaves like an ideal gas. It uses to fill the given space.

Nevertheless, the coding of the Hart Master was done as

carefully as possible regarding the amount of flash memory and

RAM.

The Hart Protocol requires a strict timing specially for burst

mode support and the primary and secondary master time slots.

To provide the optimum transparency to the user to allow all

kinds of debugging and to give the opportunity to optimize code

in critical sections, the Hart Master Software is not realized as a

library but delivered as source code.

HAL (Hardware Abstraction Layer)

A Hardware Abstraction Layer is needed to design the interface

of a software component independent from the hardware

platform. In this very small interface of the Hart master a

distinction of HAL and OSAL was not made. Therefore only an

Operating System Abstraction Layer is defined which is covering

all the needs of an appropriate HAL.

 Low amount of memory.

 The user needs source

code.

 OSAL is including the

HAL.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/technologies/hart

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Architecture Hart Master C++ 7.6 / 7.5.2024 Page 5 of 30

Architecture

Figure 1: Architecture of the Implementation

The software is mainly divided into two areas. One is the time

critical part, which is needed to meet the requirements of the

time controlled dual master protocol of Hart. The other is the

area were the application software is working, which is far less

time critical.

In the diagram above, for some modules I have clearly marked

in which file you can find their implementation. This detail is

particularly important to me so that you don't think that the

diagram is pure theory. The file names are marked with blue

color.

The figure above is clearly showing also two user interfaces.

There is a user interface (OSAL/HAL) which is connecting the

Hart Master software to a timer control interrupt and a UART

interrupt which are used for the 'fast' service procedures. Most

of the Hart protocol functionalities are solved in the timer part,

which may run on interrupt level. There are arguments for and

against this kind of implementation but you ever end up at a

point that the incoming frame has to be processed as quickly as

possible. So why not spending a few microseconds more once

the program has already reached the interrupt level. The Hart

e.g. Timer Interrupt e.g. UART Interrupt

Hart Layer 2

On1msCycle OnCharReceived
OnTxEnd Disable/Enable

StartTx

GetConfiguration
SetConfiguration

Start
Stop

GetStatus

Network-

Manage-

ment and

Monitor

Service Handler/

Hart Layer 7
Data Buffers

Manager

User Processing Layer (e. g. Test Application)

GetResponse
PutRequest

GetConfirmation
ReadMonData

GetConfig
SetConfig

Enable/Disable
GetServiceStatus

Connect/DoCommand

User Interface

OSAL/HAL

Time Critical Area
(1 ms)

Application Timing Area
(50 ms)

OnGapTimeOut

IsServiceCompleted

Medium Access Control

Application Interface

HartM_UartIface.cpp

TestCppMaster.exe

HartLayer2.cpp

HartChannel.cpp Monitor.cpp

OSAL.cpp WinSystem.cpp

 The software

architecture is

optimized for systems

with a few resources.

 Find the source code in

the figure above.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Architecture Hart Master C++ 7.6 / 7.5.2024 Page 6 of 30

protocol is not very complex but it needs to be processed fast

enough to catch a precise timing.

The load produced by the implementation is not very high.

Because the communication runs with a speed of 1200 bit/s

usually there is nothing to do in the 1 ms cycle than to keep

track of the timing. Only every 10 ms - if a frame is coming in -

a character has to be processed. The processing is done in an

incremental way thus not implying the execution of too much

instructions.

The split between the time critical area and the user application

is done within the Data Link Layer and the so called Network

Management. However, the user have not to take any special on

these separations except the provision of a few OSAL services

for Locking out other tasks. There is an 'atomic' lock out level

which has to lock out the interrupts of the Data Link Layer as

well as concurrent processes. The other level is 'critical section'

which is locking out concurrent processes. More details are

described in another chapter of this document.

The interface to the user's application is located on top of the

User Data Processing Layer (User Processing Layer). The

functions that are made available in this interface are

implemented in the file HartM_UartIface.cpp and are described

in detail in the 'Public Functions' chapter.

There are a few data objects which are required for Hart

protocol and which may be set by the user or an external Hart

master. These are such as the tag name and the address. If e.g.

the address of the Hart slave is changed through the network

the Network-Management will call the user layer to store the

data in the NV-memory. If the address is changed through the

local HMI of the Hart device, the user layer calls Network-

Management of Hart to advise the Data Link Layer protocol to

work with the new address. The function used for this setting is

SetConfiguration.

In the above figure the parts of the Hart Master are shown in

yellow color while the user parts are marked with blue.

The figure is also showing a set of functions between the

command executor the network management and the data link

layer. These functions may be used if the developer decides to

use only the data link layer by providing its own command

executor and network management.

 The top level user

interface is at least

platform independent.

 The Data Link Layer is

an independent piece of

software.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation Details Hart Master C++ 7.6 / 7.5.2024 Page 7 of 30

Implementation Details

Directory Structure

The following table shows how the individual files are distributed

among the directories.

01-Generic

02-Specific

Project Structure

The project structure is very similar to the directory structure.

Here too there is a strict distinction between generic area and

specific area.

The specific contents of the files are described in more detail in

the list below.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation Details Hart Master C++ 7.6 / 7.5.2024 Page 8 of 30

List of Files

Category Name Description

02-Device

01-Generic OSAL.h The Operating System Abstraction Layer is the top header. This is where the
central connection to the respective hardware or software platform takes

place. The header OSAL.h can only exist once, while a special

implementation (OSAL.cpp) exists for each specific hardware or software.

02-Device\01-Generic\01-Hart

01-Common HartCoding.cpp/h This module combines functions that carry out the encoding and decoding of
communication primitives and data objects.

HartFrame.cpp/h The hart frame is a construct used to collect all information which is needed

to encode and decode data of so called service primitives like responses and

requests, which are finally octet streams.

HartLib.h Some classes for the definition of HART constants.

02-Device\01-Generic\01-Hart\02-Master

01-Interface HartM_UartIface.cpp/h This is where the actual interface of the master implementation is located,

which would also have to be integrated into an embedded system. The

version with the DLL is only intended for testing under Windows.
You can find a detailed description of the provided functions in the 'Public

Functions' chapter.

WbHartM_Structures.h This file contains structures which are accessed at the outer interface as well

as in some modules in the master kernel.

WbHartM_TypeDefs.h This file contains type definitions which are used in all modules in the Hart

master kernel.

WbHartUser.cpp Limits applied by the user of the hart master software.

02-AppLayer HartChannel.cpp/h The channel manages a communication interface and the associated

propperties. The channel also uses services to conduct Hart commands.

03-Layer7 HartService.cpp/h In simple terms, a service executes a Hart command by passing a request to

Layer2 of the Hart protocol. In doing so, it returns a handle to the caller, with

which the calling program can check the status. A service is only considered
completed when the caller has read the response (e.g. FetchConfirmation).

04-Layer2 HartLayer2.cpp/h This module implements the entire state machine of the Hart communication
protocol (CHartSM) including the state machines for sending (CTxSM) and

receiving (CRxSM) bytes.

HMMacPort.h The interface to the MAC port is relatively narrow and can be defined

generically. However, the implementation depends on the hardware and
software environment. That's why there is only a header at this point, while

the file HMMacPort.cpp can be found in the specific branch.

HMUartProtocol.cpp/h This protocol layer controls the UART interface on the lower level and calls

the higher status machines when necessary (events). After this call, a ToDo

Part occurs, which in turn affects the Uart interface.

Monitor.h The same applies to the Monitor function as to the MacPort. At this point
only the interface can be defined. The implementation takes place in the

specific part.

02-Device\02-Specific\01-WinDLL\01-Hart\01-Master

01-Shell BaHartMaster-7.6.cpp/h The implementation for the calls to the Windows DLL is located here. In

practice, it is just a shell through which the functions in the CUartMaster
module are called. See also HartM_UartIface.cpp/h.

02-OSAL HMMacPort.cpp The Execute method is called directly by the fast cyclic handler. This

basically drives all status machines in the Hart implementation. Here too, the

method is divided into an Event handler and a ToDo handler.

Monitor.cpp On the one hand, there are methods that are mapped to the interface of the

Windows DLL. In addition, there are a number of functions that are included
with the kernel functions. Since this module is so small overall, the methods

were not implemented in two different files.

OSAL.cpp The Operating System Abstraction Layer maps general functions to the

operating system.

WinSystem.cpp/h The OSAL concept cannot be applied to all functions that are required.

These functions were implemented in the code of this module.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation Details Hart Master C++ 7.6 / 7.5.2024 Page 9 of 30

Public Functions

The following functions are realized in the module

HartM_UartIface.cpp in the class CUartMaster. In the DLL

interface for the test client the function names are preceeded by

BAHAMA_.

Declaration Description

Operation

EN_Bool OpenChannel(
 TY_Word port_number_,
 EN_CommType type_);

The function allocates the selected com port if possible and starts its own working

thread for accessing the Hart services. The port_number_ is limited to the range of
1 .. 254. The selected communication type (type_) should be UART in this version

of the paket. The function returns TRUE8 if successful.

In the present implementation only a single channel is possible. Thus no channel
handle is required.

void CloseChannel(); It is required to call this function at least when the application is terminating.

void GetConfiguration(
 TY_Configuration* config_);

The function copies the configuration data to a data structure provided by the

caller.

void SetConfiguration(
 TY_Configuration* config_);

The function is setting all details required for the configuration. The data is passed
in a structure provided by the caller.

Connection Services

SRV_Handle ConnectByAddr(
 TY_Byte address_,
 EN_Wait qos_,
 TY_Byte num_retries_);

Use command 0 with short address to get the connection information.

address_ 0 .. 63

qos_ NO_WAIT(0), WAIT(1)

num_retries_ 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

SRV_Handle ConnectByUniqueID(
 TY_Byte* data_ref_,
 EN_Wait qos_,
 TY_Byte num_retries_);

Use command 0 with long address to get the connection information.

data_ref_ Pointer to a five byte array with the unique identifier

qos_ NO_WAIT(0), WAIT(1)

num_retries_ 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.

Note: The function is not yet implemented.

SRV_Handle ConnectByShortTag(
 TY_Byte* data_ref_,
 EN_Wait qos_,
 TY_Byte num_retries_);

Use command 11 with global address to get the connection information.

data_ref_ Pointer to the byte array of a length of 6 packed ASCII bytes

qos_ NO_WAIT(0), WAIT(1)

numRetries 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.

Note: The function is not yet implemented.

SRV_Handle ConnectByLongTag(
 TY_Byte* data_ref_,
 EN_Wait qos_,
 TY_Byte num_retries_);

Use command 21 with global address to get the connection information.

data_ref_ Pointer to the 32 byte ISO Latin 1 string with the long tag

name

qos_ NO_WAIT(0), WAIT(1)

num_retries_ 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.
Note: The function is not yet implemented.

void FetchConnection(
 SRV_Handle handle_,
 TY_Connection* connection_);

Fills a structure provided by the caller with the connection information. hSrv is the
service handle which was returned by one of the connection functions.

Note: After a call of this function the driver is deleting the service. hSrv is no

longer valid after calling FetchConnection once.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation Details Hart Master C++ 7.6 / 7.5.2024 Page 10 of 30

Communication Services

SRV_Handle LaunchCommand(
 TY_Byte command_,
 EN_Wait qos_,
 TY_Byte* data_ref_,
 TY_Byte data_len_,
 TY_Byte* bytes_of_unique_id_);

Send a command in the range 0..255.

command_ Hart command (0..255) to be sent with the request

qos_ NO_WAIT(0), WAIT(1)

data_ref_ Pointer to a native byte array which is sent as payload data

data_len_ Length of the byte array

bytes_of_unique_id_ Five byte unique identifier of the addressed device

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.
Do command can be used for the support of most of the Hart services including all

user specific commands.

SRV_Handle LaunchExtCommand(
 TY_Word command_,
 EN_Wait qos_,
 TY_Byte* data_ref_,
 TY_Byte data_len_,
 TY_Byte* bytes_of_unique_id_);

Send a command in the range 0..65535.

command_ Extended Hart command (0..65535) to be sent with the

request

qos_ NO_WAIT(0), WAIT(1)

data_ref_ Pointer to a native byte array which is sent as payload data

data_len_ Length of the byte array

bytes_of_unique_id_ Five byte unique identifier of the addressed device

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.
The extended command in Hart 6/7 is an extension which is using the byte

command 31 to carry a larger command within the data area. Therefore this

function was introduced more or less for the convenience of the HartDLL user.
The function is automatically taking care of the correct usage of command 31.

Note: The function is not yet implemented.

EN_Bool IsServiceCompleted(
 SRV_Handle service_);

Returns TRUE8 if the service (service_) was completed.

void FetchConfirmation(
 SRV_Handle service_,
 TY_Confirmation* conf_data_);

Fills a structure provided by the caller with the service results information such as
the response codes and the response data (if any).

Encoding

void PutInt8(
 TY_Byte data_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Insert an integer 8 into the byte array buffer pointed to by data_ref_ starting at the

position offset_.

void PutInt16(
 TY_Word data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 16 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void PutInt24(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 24 into the byte array buffer pointed to by data_ref_ starting at the
position offset_. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void PutInt32(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 32 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void PutInt64(
 TY_DWord data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert an integer 64 into the byte array buffer pointed to by data_ref_ starting at the

position offset_. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void PutFloat(
 TY_Float data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert a single precision IEEE 754 float value into the byte array buffer pointed to

by data_ref_ starting at the position offset. Start with the most significant byte if
endian is MSB_FIRST(0), which is the Hart standard.

void PutDFloat(
 TY_DFloat data_,
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Insert a double precision IEEE 754 float value into the byte array buffer pointed to
by dataRef starting at the position offset. Start with the most significant byte if

endian is MSB_FIRST(0), which is the Hart standard.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation Details Hart Master C++ 7.6 / 7.5.2024 Page 11 of 30

void PutPackedASCII(
 TY_Byte* asc_string_ref_,
 TY_Byte asc_string_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Insert a string (asc_string_ref_) of the length of asc_string_len_ in packed ASCII

format into the byte array buffer pointed to by data_ref_ starting at the position

offset_. It is recommented that asc_string_len_ is an ordinary multiple of 4.

void PutOctets(
 TY_Byte* stream_ref_,
 TY_Byte stream_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a number of stream_len_ bytes into the byte array buffer pointed to by

data_ref_ starting at the position offset_.

void PutString(
 TY_Byte* string_ref_,
 TY_Byte string_max_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a string from string_ref_ to data_ref_. The actual number of characters

stored cannot be greater than string_max_len_. If the string contains a null, the last
character saved is a null character if this does not exceed the string_max_len_

limit.

Decoding

TY_Byte PickInt8(
 TY_Byte offset_,
 TY_Byte* data_ref_);

Return the value of the byte in the byte array buffer pointed to by data_ref_ from
the position offset_.

TY_Word PickInt16(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 16 from the byte array buffer pointed to by

data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt24(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 24 from the byte array buffer pointed to by dtaRef

at the position offset. Assume that the most significant byte is the first if endian is
MSB_FIRST(0), which is the Hart standard.

TY_DWord PickInt32(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 32 from the byte array buffer pointed to by

data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_UInt64 PickInt64(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the integer 64 from the byte array buffer pointed to by

data_ref_ from the position offset_. Assume that the most significant byte is the

first if endian is MSB_FIRST(0), which is the Hart standard.

TY_Float PickFloat(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the single precision IEEE754 number from the byte array

buffer pointed to by data_ref_ from the position offset_. Assume that the most

significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

TY_DFloat PickDFloat(
 TY_Byte offset_,
 TY_Byte* data_ref_,
 EN_Endian endian_);

Return the value of the double precision IEEE754 number from the byte array

buffer pointed to by data_ref_ from the position offset_. Assume that the most
significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

void PickPackedASCII(
 TY_Byte* string_ref_,
 TY_Byte string_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Generate a string and copy it to the buffer pointed to by sb. The final string should
have the length string_len. The packedASCII source is a set of bytes in the byte

array buffer pointed to by data_ref_, starting at index offset_.

Note: The string length has to by a multiple of 4 while the number of
packedASCII bytes is a multiple of 3.

void PickOctets(
 TY_Byte* stream_ref_,
 TY_Byte stream_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

Copy a number (numOctets) of bytes from the byte array buffer pointed to by
dataSource to the user buffer pointed to by dataDestination.

void PickString(
 TY_Byte* string_ref_,
 TY_Byte string_max_len_,
 TY_Byte offset_,
 TY_Byte* data_ref_);

The function reads a string from a buffer (data_ref_) starting at index offset_ and

stores the characters in string_ref_. The string buffer is read from until a null

character appears or string_max_len_ is reached. If possible, the null character is
also saved.

Internal

void FastCyclicHandler(TY_Word time_ms_); Although this function is not accessible to the test client, it is required for the

operation of the Hart protocol. The function must be called by a separate task
approximately every millisecond to enable timing in the communication.

The time_ms parameter indicates how many milliseconds have passed since the

last call.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Embedded System RequirementsHart Master C++ 7.6 / 7.5.2024 Page 12 of 30

Embedded System Requirements

It is difficult to estimate the system requirements for targets

based on different micro controllers and different development

environments. The following is therefore giving a very rough

scenario for the target system resources.

Item Requirement/Size Comment

RAM 64k Depends very much on addressing structure of the controller

and the used compiler and linker.
ROM (Flash) 100k

Timing 2 ms Timer interrupt 2 ms is the minimum requirement, 1 ms would be much

better.

50 ms cyclic all from

task level

This is needed to run the command interpreter.

I/O UART and Hart MODEM

Rx and Tx functions

Carrier detection would be helpful but is not required.

System Simple math +-*/

memcpy()

memset()

memcmp()

Only a few standard library functions are required. There is

no special need for multi tasking, messaging or semaphores.

1 ms timing

resolution

Table 1: Embedded System Requirements

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Overview Hart Master C++ 7.6 / 7.5.2024 Page 13 of 30

Windows Test Adapter

Overview

The Windows test adapter is a software developed in C#. This

test adapter uses a Windows DLL in which the Hart Master is

embedded. The DLL implements the HART Protocol, whose

firmware was written in C++ in real time.

The connection to the DLL is defined in the BaHartMaster-7.6.cs

file. Here you can find the declarations for all functions,

structures and constants that are required.

Figure 2: Architecture of the Test Environment

User Interface

The executable file for the test adapter is located at the

following location:

.\02-Device\03-Test\01-Windows\03-DebugBench\TestCppMaster.exe

When the executable file is started, the

Simulations DLL for the master is

automatically loaded.

The work surface is divided into two halves.

Settings are made or commands are given

in the upper area, while the lower area is

reserved for a monitor that shows the

communication process.

Some basic settings are possible in the Start

tab and a connection can be established

with the connected slave.

Screenshot 1: The Tab 'Start'

Test Adapter

(Test Client)

C#

PC Com Port

Modem

m

Hart

Slave

HART Uart Master

C++

HAL

DLL (OSAL)

Reuseable Source

Code

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation Details Hart Master C++ 7.6 / 7.5.2024 Page 14 of 30

Hart commands are configured and executed in the

Commands tab.

Screenshot 2: The Tab 'Commands'

The 'Options/Test' tab contains additional settings and

allows the execution of simple tests. Since you have the

source code, you can easily modify the tests or add new

ones.

Screenshot 3: The Tab 'Options/Tests'

The 'Slave Data' tab is intended to read and

display the data of a connected slave.

Screenshot 4: The Tab 'Slave Data'

Implementation Details

The project file for the test adapter can be found in the

following path:

.\02-Device\03-Test\01-Windows\02-Apps\01-Hart\

01-TestClientMaster\TestCppMaster.csproj

Directory Structure

Note: The content of 02-Forms, 03-TestClient and 04-

HartMasterIntf is not explicity listed.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation Details Hart Master C++ 7.6 / 7.5.2024 Page 15 of 30

Project Structure

The project structure is very similar to the directory structure.

Here too there is a strict distinction between generic area and

specific area.

The specific contents of the files are described in more detail in

the list below.

List of Files

Category Name Description

01-Main

-/- FrmTestMaster.cs Includes the operation of the user interface and all functions necessary

to coordinate the additional modules.

02-Modules

01-Helpers CFrameData.cs The two most important functions of this class (CFrameData) are

CatchFrame() and GetDisplayString(). CatchFrame() reads all

information from a binary byte stream that can be interpreted (parsed),
while GetDispayString() formats a text from the information available,

which is ultimately displayed in a control that understands RTX

formatting.

ChartUtils.cs There are a few small functions here that read texts from numerical
information in the hard protocol that indicate what the codes mean. An

example of this is the engineering unit.

Chelpers.cs A number of small functions are implemented in the helpers that do

nothing other than convert numbers into formatted text in a certain way.

The functions generally have nothing to do with Hart.

CLED.cs The module provides the code that is needed to realize the graphical

representation of an LED.

CmdProperties.cs The code provides texts for various elements of a command response.

Csettings.cs A .NET component is used to store and read the user settings.

Nevertheless, the individual settings must be assigned to specific
functionalities.

DataSyntax,cs DataSyntax is a simple construct that allows the user to define the
structure of a data set. It's a bit similar to the definition of a structure in

C++.

Small example (data for command 18):
pca6;TAG NAME;pca12;MESSAGE 16 CHARS;

dec8;5;dec8;11;dec8;111

DecodeCmdData.cs The module provides functions to decode some commands. The input is

a response as a byte array and the output consists of a string.
The following commands are decoded:

0, 1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 34, 35.38,

48, 78 and 109.
Here is an example for command 0:

In: FE 11 2B 05 07 01 01 08 00 9C 9F 4D 05 0B 00 94 00 00 11 00 11

01|65|
Out: 254/Man17/Dev43/5 PAs/Hart7/Tx1/Sw1/Hw8/FL00000000/ID

0x9C 0x9F 0x4D/MinPArsp:5/MaxNumDVs:11/CfgChCnt:148/

ExtDevStat:00000000/ManuID:0x0011/LabDistID:0011/Profile:1|65|

FrameHelpers.cs A set of classes and methods needed to interact with the user. Mainly
it's about decoding and representation.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Implementation Details Hart Master C++ 7.6 / 7.5.2024 Page 16 of 30

StatusControl.cs This is a set of functions keeping track of configuration changes with

the master test framework.

02-Forms FrmAbout.cs The form provides information about the current implementation. Here

you can also access the documentation.

FrmCmd18.cs Configuration of command 18.

FrmDataSyntax.cs Data syntax is kind of a description language to define data sets. The
form is an editor for this

FrmExtCmd.cs Configuration of an extended command.

FrmSetColors.cs Configuration of the coloring of the display.

FrmUserCmd.cs Configuration of user specific commands.

03-TestClient TestClient.cs TestClient is a very central module through which almost all

communication processes are handled.

04-BaHartMasterIntf BaHartMaster-7.6.cs The module contains all declarations that are required to interface to the

test DLL (BaHartMaster-7.6.dll).

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Establishing a Connection Hart Master C++ 7.6 / 7.5.2024 Page 17 of 30

Code Walkthrough

Establishing a Connection

N Breakpoint Comment
Startup

1 HartM_UartIface.cpp, Line 29  result = CChannel::Open(port_number_, CChannel::CType::UART);

2 Start debug

3 Step into

4 HartChannel.cpp, Line 56  if (CHMMacPort::Open(m_port_number, m_baudrate, m_type) ==
EN_Bool::TRUE8)

5 Step into

6 HMMacPort.cpp, Line 112  if (CWinSys::CUart::Open((TY_Byte)port_, baudrate_) ==
EN_Bool::TRUE8)

7 Step into The com port is getting initialized

8 WinSystem.cpp, Line 103  CTask_uart_cyclic_task.Start(CUartMaster::FastCyclicHandler);

10 Step into The start of a task (thread) is prepared

11 WinSystem.cpp, Line 319  return CWinSys::CThread::Start(&uart_thread_control);

12 Step into This is the start of the Windows thread

13 WinSystem.cpp, Line 232  COSAL::CTimer::Init();

14 Step into The central timer is initialized

15 WinSystem.cpp, Line 234  return EN_Error::NONE;

16 HartChannel.cpp, Line 59  return EN_Bool::TRUE8;

17 TestClient.cs, Line 125  HartMasterDLL.BAHAMA_StartMonitor();

18 TestClient.cs, Line 133  HartMasterDLL.BAHAMA_GetConfiguration(ref
CTestClient.Configuration);

19 Continue Startup completed

Establishing a connection

Select tab 'Commands', connect a Hart salve

1 Hart_UartIface.cpp, Line 90  p_service = CChannel::GetServicePtr(h_service);

2 Start debug

3 Click Cmd 0 The service will be initialized

4 Hart_UartIface.cpp, Line 104  CChannel::SetServiceOwner(h_service, EN_Owner::PROTOCOL);

5 Finally the service is passed to the protocol handler.

6 HartLayer2.cpp, Line 642  m_active_CService =
CChannel::GetServicePtr(CChannel::GetRequestedService());

7 The service is picked by the protocol handler when it is in the state
WATCHING

8 HartLayer2.cpp, Line 674  *to_do_ = CHMUartProt::EN_ToDo::START_TRANSMIT;

9 This is starting the tramission of the request

10 HMUartProtocol.cpp. Line 152  to_do = CHartSM::EventHandler(CHartSM::EN_Event::TX_DONE, NULL);

11 This is reached, when the sending of the request was completed. Now
the receiver is enabled.

To get to the point where the answer was received you have to restart completely because the connected
slave is not stopping when your machine is halted at a break.
Therefore stop debugging

12 HMUartProtocol.cpp. Line 73  to_do = CHartSM::EventHandler(CHartSM::EN_Event::RX_COMPLETED_RSP,
&m_response_frame);

13 Start debugging

14 Click 'Cmd 0' The breakpoint is indicating the successful reception of the
response.

15 HartLayer2.cpp, Line 720  CChannel::FireServiceEvent(CChannel::CServiceEvent::CONFIRMATION,
 m_active_CService->GetHandle(),
 0

);

16 HartChannel.cpp, Line 322  GetServicePtr(handle_)->SetOwner(EN_Owner::USER);

17 After this call the user can access the service again.

18 HartChannel.cpp, Line 146  EN_Bool CChannel::IsServiceCompleted(SRV_Handle handle_)

HartChannel.cpp, Line 154  return EN_Bool::TRUE8;

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Executing a Command Hart Master C++ 7.6 / 7.5.2024 Page 18 of 30

Executing a Command

Executing a command is very similar to executing a connection

request. Therefore, in the following table I have limited myself

to keywords and comments on interesting places in the code.

You should probably know something more about the

implementation of state machines. The status machine is fed

with events and, if necessary, data and carries out status

changes if necessary. It also returns a to do variable to the

caller, which specifies what action should take place next.

N Breakpoint Comment
1 Each command is mapped to the function LaunchComand() in

HartM_UartIface.cpp.
SRV_Handle CUartMaster::LaunchCommand(TY_Byte command_,
 EN_Wait qos_,
 TY_Byte* data_ref_,
 TY_Byte data_len_,

 TY_Byte* bytes_of_unique_id_)

2 After the serivce is prepared, it call it's own Launch method which
is encoding the request frame.

3 Start debug and click Cmd 0

4 HartService.cpp, Line 77  CCoding::EncodeFrame(&m_request);

5 Click Cmd 18

6 HartM_UartIface.cpp, Line 267  CChannel::SetServiceOwner(h_service, EN_Owner::PROTOCOL);

7 After the request frame is encoded, the service is passed to the Hart
protocol machine, which runs in its own task.

8 HartLayer2.cpp, Line 642  m_active_CService =
CChannel::GetServicePtr(CChannel::GetRequestedService());

9 As already shown in the connection, the service is taken up by the
protocol machine on the other side.

10 The request is then sent and the response is expected. In this context, the question might arise as
to where the incoming data is decoded. This happens in the so-called parser, which processes the
frame.

 HartFrame.cpp, Line 59  EN_Bool CFrame::TryParse(TY_Word* bytes_parsed_, TY_Byte*
new_data_, TY_Byte* new_err_, TY_Word new_data_len_, EN_Bool
gap_time_out_)

 The next question might be: and where does the user data end up. The
data is also known as a payload and is placed in a buffer at the
following location.

 HartFrame.cpp, Line 111  m_status = GetPayload(new_data_[bytes_parsed],
new_err_[bytes_parsed]);

 .. and further

 HartFrame.cpp, Line 354 CFrame::EN_Status CFrame::GettingPayload(TY_Byte data_, TY_Byte
error_)
{
 m_target_chk ^= data_;
 m_payload_data[m_payload_count] = data_;
 m_payload_count++;

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Type Definitions Hart Master C++ 7.6 / 7.5.2024 Page 19 of 30

Additional Information

Type Definitions

Types Enums

typedef unsigned char TY_Byte;
typedef unsigned short TY_Word;
typedef unsigned int TY_DWord;
typedef int TY_Int32;
typedef unsigned long long TY_UInt64;
typedef float TY_Float;
typedef double TY_DFloat;
typedef TY_Word WRD_Handle;
typedef TY_Word SRV_Handle;

enum class EN_SRV_Result : TY_Byte {
 EMPTY = 0,
 NO_DEV_RESP = 1,
 COMM_ERR = 2,
 INVALID_HANDLE = 3,
 IN_PROGRESS = 4,
 SUCCESSFUL = 5,
 RESOURCE_ERROR = 6,
 TOO_FEW_DATA_BYTES = 7,
 OBSOLETE = 8
};
enum class EN_Endian : TY_Byte
{
 MSB_First = 0, // Big endian (Hart standard)
 LSB_First = 1 // Little endian
};
enum class EN_Bool : TY_Byte
{
 FALSE8 = 0,
 TRUE8 = 1
};
enum class EN_Bit : TY_Byte
{
 CLEAR8 = 0,
 SET8 = 1
};
enum class EN_Error : TY_Byte
{
 NONE = 0,
 ERR = 1
};

I readily admit that the typedefinitions I use

are not as precise as the original ones. But

for me the code is more readable.

For the enums, I consciously chose enum

classes because they are the easiest way to

associate the values of the enums with an

integer type.

enum class EN_Wait : TY_Byte
{
 NO_WAIT = 0,
 WAIT = 1
};
enum class EN_CommType : TY_Byte
{
 NONE = 0,
 UART = 1,
 TCP_IP = 2
};

Coding Conventions

Regarding this issue, I have only defined a format that makes the scope of a label clearer.

It's just to make the code easier to read. This simple type of coding convention can be used

in both C++ and C#.

Pascal case

local_variable function_param_ m_member_var mo_member_object

Variable with local scope. A function parameter has
a tailing underscore.

Basic type private
member variable

Complex object member

s_member_var

Basic type static private
member variable

Camel case

PublicVariable PublicObject AnyMethod

Variable with public
scope.

Object with public scope. No difference between
public and private.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hart at a Glance Hart Master C++ 7.6 / 7.5.2024 Page 20 of 30

Hart at a Glance

Frame Coding

Figure 3: The Basic Coding of a Hart Frame

The figure above is giving an overview of the coding of a Hart

frame. Usually Hart services are composed of a request (stx) by

the master followed the response (ack) of a slave. Bursts (back)

are frames looking like a response (including response codes)

but sent by the slave without any request. The slave is sending

these frames in burst mode within defined time slots following

the rules of the protocol specification. In fact Hart is a token

passing protocol which allows also the slave to be a token

holder and send burst frames.

The following chapter is showing a list of Hart commands which

are used very often. The list is showing the major differences

between Hart 5.3, Hart 6 and Hart 7.4.

New items in Hart 6 are marked with yellow color while new

items of Hart 7.4 are marked by blue color.

However, the following is not replacing any specification and is

not showing the details which are needed for an

implementation. The details has to be taken from the Hart

specifications which are provided by the FieldComm Group:

Hart Specifications.

That the listed commands are most commonly used is not the

opinion of the HCF but the opinion of the author of this

document.

DEL ADDRESS ExpBytes CMD CNT DATA CHK

Short Address

6 Bit Polling Address

Field Device in Burst Mode

Master Address

0 Secondary Master

1 Primary Master

The Delimiter leads to the Byte Count

The Byte Count leads to the Check Byte

MAN DEV UNIQUE ID

Long Address

6 Least Significant Bits of Manufacturer ID

Field Device in Burst Mode

Master Address 0 Secondary Master

1 Primary Master

Delimiter

Frame Type

1 BACK (Burst Frame)

2 STX (Master to Field Device)

6 ACK (Field Device to Master)

Physical Layer Type 0 Asynchronous

1 Synchronous

Number of Expansion Bytes

0 Polling (1 Byte) Address

1 Unique (5 Byte) Address
Address Type

Reponse Data Normal: RSP1 RSP2 PAYLOAD

Reponse Data Cmd 31: RSP1 RSP2 PAYLOAD EXTCMD

N Bytes

2 Bytes N Bytes

5 Bytes

N (+2) (+2) Bytes

Data may contain response codes (ack,

back) and/or the extended command (stx,

ack, back).
0-3 Bytes

Note: In this figure the preambles (0xff), which

are sent before the delimiter are not shown

because the preambles are considered to be a

part of the physical layer.

Number payload bytes +

response bytes + extended

command bytes

First Address Byte

Normally not

used.

Device ID

Unique for 6 bit

manufacturer ID and

8 bit device ID.

1 or 5 Bytes

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/hart-specifications

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hart at a Glance Hart Master C++ 7.6 / 7.5.2024 Page 21 of 30

Commonly Used Commands

No Title Request Data Response Data

Universal

00 Read Unique
Identifier

None 0 int8 254

1 Manufacturer ID

2 Short device ID

3 Number preambles request

4 Hart revision

5 Device revision

6 Software revision

7 Hw rev and signaling code

8 Flags

9 int24 DevUniqueID

12 int8 Number preambles response

13 Maximum number device variables

14 int16 Configuration change counter

16 int8 Extended device status

17 int16 Extended manufacturer code

19 Extended label distributor code

21 int8 Device profile

01 Read Primary
Variable

None 0 int8 PV Units

1 float Primary variable

02 Read Current and
Percent of Range

None 0 float Current

1 float Percent of range

03 Read Current and
Dyn. Variables

None 0 float Current

4 int8 PV1 units code

5 float PV1 value

9 int8 PV2 units code

10 float PV2 value

14 int8 PV3 units code

15 float PV3 value

19 int8 PV4 units code

20 float PV4 value

06 Write Polling
Address

0 int8 Polling Address 0 int8 PV Units

1 int8 Loop current mode 1 int8 Loop current mode

07 Read Loop
Configuration

None 0 int8 Polling address

1 Loop current mode

08 Read Dyn. Vars
Classification

None 0 int8 PV1 classification

1 PV2 classification

2 PV3 classification

3 PV4 classification

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hart at a Glance Hart Master C++ 7.6 / 7.5.2024 Page 22 of 30

No Title Request Data Response Data

Universal

09 Read Device
Variables with

Status

0 int8 Slot0: Device variable code 0 int8 Extended device status

1 Slot1: Device variable code 1 Slot0: Device variable properties

2 Slot2: Device variable code 1 int8 Device variable code

3 Slot3: Device variable code 2 Device variable classification

4 int8 Slot4: Device variable code 3 Device variable units code

5 Slot5: Device variable code 4 float Device variable value

6 Slot6: Device variable code 8 int8 Device variable status

7 Slot7: Device variable code 9 struct Slot1: Device variable properties

 17 Slot2: Device variable properties

25 Slot3: Device variable properties

33 struct Slot4: Device variable properties

41 Slot5: Device variable properties

49 Slot6: Device variable properties

57 Slot7: Device variable properties

65 time Time stamp slot0

11 Read Unique ID
by Short Tag

0 pac6 Tag name (packed ascii)

6 bytes = 8 characters

Same as command 0 read unique identifier

12 Read Message None 0 pac24 Message (packed ascii)

24 bytes = 32 characters

13 Read Tag,
Descriptor,

Date

None 0 pac6 Short tag (packed ascii)

6 bytes = 8 characters

6 pac12 Descriptor (packed ascii)

12 bytes = 16 characters

18 int8 Day

19 Month

20 Year (offset to 1900)

14 Read Primary
Variable

Transducer

Information

None 0 int24 Transducer serial number

3 int8 Units code

4 float Upper transducer limit

8 Lower transducer limit

12 Minimum span

15 Read Device
Information

None 0 int8 Alarm selection code

1 Transfer function code

2 Units code

3 float PV upper range value (for 20 mA)

7 PV lower range value (for 4 mA)

11 PV damping value

15 int8 Write protect code

16 Reserved, must be set to 250

17 PV analog channel flags

16 Read Ass. Num None 0 int24 Final assembly number

17 Write Message Same as response command 12 Same as response command 12

18 Write Tag,
Descriptor,

Date

Same as response command 13 Same as response command 13

19 Write Ass. Num Same as response command 16 Same as response command 16

20 Read Long Tag None 0 str32 Long tag: 32 ISO Latin-1 characters

21 Read Unique ID
by Long Tag

0 str32 Long tag: 32 ISO Latin-1 characters Same as command 0 read unique identifier

22 Write Long Tag Same as response command 20 Same as response command 20

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hart at a Glance Hart Master C++ 7.6 / 7.5.2024 Page 23 of 30

No Title Request Data Response Data

Universal / Common Practice

38 Reset Config
Changed Flag

None None

0 int16 Configuration change counter 0 int16 Configuration change counter

48 Read Additional
Device Status

None

0 int8[5] Transmitter specific status 0 int8[5] Transmitter specific status

 6 int8[2] Operating mode

6 int8 Extended device status 6 int8 Extended device status

7 Device operating mode 7 Device operating mode

 8 int8[3] Analog output status

8 int8 Standard status 0 8 int8 Standard status 0

9 Standard status 1 9 Standard status 1

10 Analog channel saturated 10 Analog channel saturated

 11 int8[3] Analog output fixed

11 int8 Standard status 2 11 int8 Standard status 2

12 Standard status 3 12 Standard status 3

13 Analog channel fixed 13 Analog channel fixed

 14 int8[3] Transmitter specific status

14 int8[10] Transmitter specific status 14 int8[10] Transmitter specific status

Common Practice

33 Read Device
Variables

0 int8 Slot0: Device variable code 0 Slot0: Device variable properties

1 Slot1: Device variable code 0 int8 Device variable code

2 Slot2: Device variable code 1 Device variable units code

3 Slot3: Device variable code 2 float Device variable value

 6 struct Slot1: Device variable properties

12 Slot2: Device variable properties

18 Slot3: Device variable properties

34 Write Prim. Var.
Damping

0 float PV 1 damping value 0 float PV 1 damping value

35 Write Prim. Var.
Range Values

0 int8 Units code 0 int8 Units code

1 float Upper range value 1 float Upper range value

5 Lower range value 5 Lower range value

36 Set Prim. Var.
Upper Range

None None

37 Set Prim. Var.
Lower Range

None None

40 Enter/Exit
Fixed Current

0 float Current value 0 float Actual current value

42 Device Reset None None

43 Set Primary
Variable Zero

None None

44 Write Prim. Var.
Units

0 int8 PV 1 units code 0 int8 PV 1 units code

45 Trim Prim. Var.
Current Zero

0 float Measured current value 0 float Actual current value

46 Trim Prim. Var.
Current Gain

0 float Measured current value 0 float Actual current value

50 Read Dynamic
Variable

Assignments

None 0 int8 PV 1 variable code

1 PV 2 variable code

2 PV 3 variable code

3 PV 4 variable code

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hart at a Glance Hart Master C++ 7.6 / 7.5.2024 Page 24 of 30

No Title Request Data Response Data

Common Practice

51 Write Dynamic
Variable

Assignments

0 int8 PV 1 variable code 0 int8 PV 1 variable code

1 PV 2 variable code 1 PV 2 variable code

2 PV 3 variable code 2 PV 3 variable code

3 PV 4 variable code 3 PV 4 variable code

54 Read Device
Variable

Information

0 int8 Device variable code 0 int8 Device variable code

 1 int24 Sensor serial number

4 int8 Units code

5 float Variable upper limit

9 Variable lower limit

13 Variable damping

17 Variable minimum span

21 int8 Variable classification

22 Variable family

23 time Acquisition period

27 bin8 Variable properties

71 Lock Device 0 int8 Lock code 0 int8 Lock code

76 Read Lock State None 0 int8 Lock status

78 Read Aggregated
Commands

0 int8 Number of commands requested 0 int8 Extended device status

1 str[] Array of command requests

struct {

int16 command
int8 byteCount

int8[] requestData }

1 int8 Number of commands requested

 2 str[] Array of command responses

struct {
int16 command

int8 byteCount

int8 responseCode
int8[] responseData }

791 Write Device
Variable

0 int8 Device Variable Code 0 int8 Device Variable Code

1 DV command code 1 DV command code

2 DV units code 2 DV units code

3 float DV value 3 float DV value

7 int8 DV status 7 int8 DV status

103 Write Burst
Period

0 int8 Burst message 0 int8 Burst message

1 time Update period 1 time Update period

5 Maximum update period 5 Maximum update period

104 Write Burst
Trigger

0 int8 Burst message 0 int8 Burst message

1 Trigger mode selection code 1 Trigger mode selection code

2 Device variable classification for

trigger level

2 Device variable classification for trigger

level

3 Units code 3 Units code

4 float Trigger level 4 float Trigger level

1 Used to simulate the value of a device variable

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hart at a Glance Hart Master C++ 7.6 / 7.5.2024 Page 25 of 30

No Title Request Data Response Data

Common Practice

105 Read Burst Mode
Configuration

None 0 int8 Burst mode control code

1 int8 Burst command number

2 int8 Burst command slot 0

3 int8 Burst command slot 1

4 int8 Burst command slot 2

5 int8 Burst command slot 3

0 int8 Burst message 0 int8 Burst mode control code

 1 0x1f (31) command expansion

2 DV code slot0

3 DV code slot1

4 DV code slot2

5 DV code slot3

6 DV code slot4

7 DV code slot5

8 DV code slot6

9 DV code slot7

10 Burst message

11 Maximum number of burst messages

12 int16 Extended command number

14 time Update time

18 Maximum update time

22 int8 Burst trigger mode code

23 DV classification for trigger value

24 Units code

25 float trigger value

106 Flush Delayed
Responses

None None

107 Write Burst
Device Variables

0 int8 DV code slot 0 0 int8 DV code slot 0

1 DV code slot 1 1 DV code slot 1

2 DV code slot 2 2 DV code slot 2

3 DV code slot 3 3 DV code slot 3

4 int8 DV code slot 4 4 int8 DV code slot 4

5 DV code slot 5 5 DV code slot 5

6 DV code slot 6 6 DV code slot 6

7 DV code slot 7 7 DV code slot 7

8 Burst message 8 Burst message

108 Write Burst Mode
Command

0 int8 Command number for the burst

response

0 int8 Command number of the burst

response

109 Burst Mode
Control

0 int8 Burst mode control code 0 int8 Burst mode control code

113 Catch Device
Variable

0 int8 Destination DV code 0 int8 Destination DV code

1 Capture mode code 1 Capture mode code

2 Source slave manufacturer ID 2 int8[5] Source slave address

3 Source slave device type

2 int16 Source slave expanded device type

4 int8[3] Source slave device ID

7 int8 Source command number 7 int8 Source command number

8 Source slot number 8 Source slot number

9 float Shed time for this mapping 9 float Shed time for this mapping

7 int8 0x1f (31) command expansion 7 int8 0x1f (31) command expansion

8 Source slot number 8 Source slot number

9 float Shed time for this mapping 9 float Shed time for this mapping

13 int16 Ext source command number 13 int16 Ext source command number

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Hart at a Glance Hart Master C++ 7.6 / 7.5.2024 Page 26 of 30

No Title Request Data Response Data

Common Practice

114 Read Caught
Device Variable

0 int8 Destination DV code 0 int8 Destination DV code

 1 Capture mode code

2 int8[5] Source slave address

7 int8 Source command number

8 Source slot number

9 float Shed time for this mapping

7 int8 0x1f (31) command expansion

8 Source slot number

9 float Shed time for this mapping

13 int16 Ext source command number

523 Read Condensed
Status Mapping

Array

0 int8 Starting index status map 0 int8 Actual starting index

1 Number of entries to read 1 Number of entries returned

 2 int4[] Status map codes array

524 Write Condensed
Status Mapping

Array

0 int8 Starting index status map 0 int8 Actual starting index

1 Number of entries to write 1 Number of entries returned

2 int4[] Status map codes array 2 int4[] Status map codes array

525 Reset Condensed
Status Map

None None

526 Write Status
Simulation Mode

0 int8 Status simulation mode 0 int8 Status simulation mode

527 Simulate Status
Bit

0 int8 Status bit index 0 int8 Status bit index

1 Status bit value 1 Status bit value

Response Codes

As response code 1 is command specific it is documented

together with the command specifications. However response

code 2 is of general nature and contains 8 bit flags with the

following meaning.

Flag Number / Meaning Description

Bit #7 Field Device Malfunction The device has detected a hardware error or failure. Further information may be available

through the Read Additional Transmitter Status Command, #48.

Bit #6 Configuration Changed A write or set command has been executed.

Bit #5 Cold Start Power has been removed and reapplied resulting in the reinstallations of the setup

information. The first command to recognize this condition will automatically reset this

flag. This flag may also be set following a Master Reset or a Self Test.

Bit #4 More Status Available More status information is available than can be returned in the Field Device Status.

Command #48, Read Additional Status Information, will provide this additional status

information.

Bit #3 Primary Variable Analog

Output Fixed

The analog and digital analog outputs for the Primary Variable are held at the requested

value. They will not respond to the applied process.

Bit #2 Primary Variable Analog

Output Saturated

The analog and digital analog outputs for the Primary Variable are beyond their limits and

no longer represent the true applied process.

Bit #1 Non Primary Variable Out of

Limits

The process applied to a sensor, other than that of the Primary Variable, is beyond the

operating limits of the device. The Read Additional Transmitter Status Command, #48,

may be required to identify the variable.

Bit #0 Primary Variable Out of

Limits

The process applied to the sensor for the Primary Variable is beyond the operating limits

of the device.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Data Types Hart Master C++ 7.6 / 7.5.2024 Page 27 of 30

Data Types

Float IEEE 754

The following summarizes the IEEE 754 and recommends that

standards are referred to for implementation.

The floating point values passed by the protocol are based on

the IEEE 754 single precision floating point standard.

Data Byte #0 #1 #2 #3

 SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

S - Sign of the mantissa; 1 = negative

E - Exponent; Biased by 127 decimal in two's complement format

M - Mantissa; 23 least significant bits, fractional portion

The value of the floating point number described above is

obtained by multiplying 2, raised to the power of the unbiased

exponent, by the 24-bit mantissa. The 24-bit mantissa is

composed of an assumed most significant bit of 1, a decimal

point following the 1, and the 23 bits of the mantissa.

()1272.1 − EMS

The floating point parameters not used by a device will be filled

with 7F A0 00 00: Not-a-Number.

Double IEEE 754

The following summarizes the IEEE 754 and recommends that

standards are referred to for implementation.

The floating point values passed by the protocol are based on

the IEEE 754 single precision floating point standard.

Data Byte #0 #1 #2 #3

 SEEEEEEE EEEEMMMM MMMMMMMM MMMMMMMM

Data Byte #4 #5 #6 #7

 MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM

S - Sign of the mantissa; 1 = negative

E - Exponent; Biased by 1023 decimal in two's complement

format

M - Mantissa; 52 least significant bits, fractional portion

The value of the floating point number described above is

obtained by multiplying 2, raised to the power of the unbiased

exponent, by the 53-bit mantissa. The 53-bit mantissa is

composed of an assumed most significant bit of 1, a decimal

point following the 1, and the 52 bits of the mantissa.

()10232.1 − EMS

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Data Types Hart Master C++ 7.6 / 7.5.2024 Page 28 of 30

Packed ASCII

The packed ASCII Format uses 6 Bit to encode a character.

Therefore 4 characters in the original string require 3 octets in

the resulting data. It is recommended to provide strings always

as a multiple ordinal of 4 characters

Construction of Packed-ASCII characters:

a) Truncate Bit #6 and #7 of each ASCII character.

b) Pack four, 6 bit-ASCII characters into three bytes.

Reconstruction of ASCII characters:

a) Unpack the four, 6-bit ASCII characters.

b) Place the complement of Bit #5 of each unpacked, 6-bit

ASCII character into Bit #6.

c) Set Bit #7 of each of the unpacked ASCII characters to

zero.

d) The Packed ASCII code (hexadecimal) allows the

representation of the following characters.

CHAR CODE CHAR CODE CHAR CODE CHAR CODE

@ 00 P 10 Space 20 0 30

A 01 Q 11 ! 21 1 31

B 02 R 12 " 22 2 32

C 03 S 13 # 23 3 33

D 04 T 14 $ 24 4 34

E 05 U 15 % 25 5 35

F 06 V 16 & 26 6 36

G 07 W 17 ' 27 7 37

H 08 X 18 (28 8 38

I 09 Y 19) 29 9 39

J 0A Z 1A * 2A : 3A

K 0B [1B + 2B ; 3B

L 0C \ 1C , 2C < 3C

M 0D] 1D - 2D = 3D

N 0E ^ 1E . 2E > 3E

O 0F _ 1F / 2F ? 3F

e) Note: The implementation of the function is assuming

that the packed ascii string should be an ordinal multiple

of 3. If the length of the passed string is not an ordinal

multiple of 4 the missing packed ascii characters are

replaced by spaces.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Internet Links Hart Master C++ 7.6 / 7.5.2024 Page 29 of 30

Appendix

Internet Links

Specification Documents
HART Specifications FieldComm Group

MODEMs
RS 232 Modem Microflex
USB Modem Endress + Hauser
Viator USB Modem Pepperl+Fuchs

Ethernet-APL
Advanced Physical Layer FieldComm Group
Ethernet - To the Field Ethernet APL Organisation
HART-IP Developer Kit FieldComm Group

Abbreviations

Abbreviation Description

HCF Hart Communication Foundation

Integrated in FieldComm Group

DLL Windows: Dynamic Link Library
OSI-ISO: Data Link Layer

HAL Hardware Abstraction Layer

HART Highway Addressable Remote Transducer
See also:

http://en.wikipedia.org/wiki/Highway_Addressable_Remote_Transducer_Protocol

HART-IP Hart via Internet Protocol

HART APL Hart Advanced Physical Layer

HMI Human Machine Interface

ISO International Standards Organisation

MODEM MOdulator DEModulator

NV-memory Non-Volatile memory

OSAL Operating System Abstraction Layer

OSI Open Systems Interconnection

UART Universal Asynchronous Receiver Transmitter

Download Location

The software package described in this document can be

downloaded via the following link:

https://www.borst-automation.com/downloads/hart-master-source-code-7.6.1.zip

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
https://www.fieldcommgroup.org/hart-specifications
https://microflx.com/products/rs-232_hart?variant=792035143
https://www.de.endress.com/de/messgeraete-fuer-die-prozesstechnik/systemkomponenten-rekorder-data-manager/hart-usb-interface-commubox-fxa195?t.tabId=product-overview
https://www.pepperl-fuchs.com/germany/de/classid_1362.htm?view=productdetails&prodid=103586
https://www.fieldcommgroup.org/technologies/ethernet-apl
https://www.ethernet-apl.org/wp-content/uploads/2022/08/Ethernet-APL_Ethernet-To-The-Field_EN_FINAL_June-2021.pdf
https://store.fieldcommgroup.org/products/hart-ip
https://www.borst-automation.com/downloads/hart-master-source-code-7.6.1.zip

Walter Borst

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven, GERMANY

Fon: +49 (0) 4721 6985100

E-Mail: walter.borst@borst-automation.de

Home: https://www.borst-automation.de/

Technical Data Sheet

Legal Issues Hart Master C++ 7.6 / 7.5.2024 Page 30 of 30

Legal Issues

Conformity

This software package was developed to the best of my

knowledge and my belief. The basis is the specifications of the

Hart Communication Foundation in version 7.9.

However, it cannot be guaranteed that the software included in

this package meets the HCF specifications in all required

respects.

It is only possible to prove the conformity of this software after

the user has integrated the software into his device and

commissions HCF or a certified company to carry out this test.

Under no circumstances am I, Walter Borst, responsible for

carrying out such tests. Nor am I responsible for correcting any

deficiencies resulting from such a test.

Copyright

Copyright, Walter Borst, 2006-2024

Kapitaen-Alexander-Strasse 39, 27472 Cuxhaven, GERMANY

Fon: +49 (0)4721 6985100, Fax: +49 (0)4721 6985102

E-Mail: info@borst-automation.de

Home: https://www.borst-automation.de/

Warranty Disclaimer

This software/firmware is supplied with NO WARRANTIES.

Walter Borst expressly disclaims any warranty for the software

package. This software package and related documents are

provided "AS IS"; without warranty of any kind, expressed or

implied. This includes implied warranties of fitness for a

particular purpose. All risk arising out of use of this package

remains with the user. By using this software package, the user

agrees that no event shall Borst Automation or Walter Borst

make responsible or liable for damages whatsoever. This

includes, without limitation, damages for loss of business

profits, loss due to business interruption, loss of business

information, or any other pecuniary loss, arising out of the use

of or the inability to use this software package.

mailto:walter.borst@borst-automation.de?subject=Embedded%20Devices%20Simulation
https://www.borst-automation.de/
mailto:info@borst-automation.de
https://www.borst-automation.de/

