
HartTools
Software Documentation

Revision: 7.6.0

Date: 15.8.2023

Real Time

WINAPI Software Solutions for

Hart Instruments Developers

Borst Automation

Kapitaen-Alexander-Strasse 39

27472 Cuxhaven

GERMANY

Fon: +49 (0)4721 6985100

Fax: +49 (0)6432 6985102

https://www.borst-automation.de

info@borst-automation.de

Copyright© 1998-2023 Borst Automation, Walter Borst, Cuxhaven, GERMANY

Windows® is a registered trademark of Microsoft Corporation

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Contents 1

Contents

Overview.. 2

Installation .. 3
Application Examples ... 4
Directory Structure .. 5

Getting Started .. 6

Debugging Example Projects ... 6
Slave Simulation with FrameAlyst .. 6
Slave Simulation with Test Client ... 7
HartDLL (Client + OSAL) .. 8

Excel ... 12
HartX (Client) .. 13

Visual Studio .. 16
Excel ... 18

SlaveDLL (Server + OSAL) ... 22
SlaveX (Server) ... 24

Test Client ... 24
Slave Simulation ... 24
User Slave DLL in FrameAlyst ... 26

Python Example ... 27
Visual Studio Code Example ... 28

Detailed Descriptions ... 32

FrameAlyst... 32
Functions and Menus ... 33
Additional Features ... 38

HartDLL (Client + OSAL) .. 47
Functions ... 48

HartX (Client) .. 53
CHartX .. 54

SlaveDLL (Server + OSAL) ... 58
Functions ... 58

SlaveX (Server) ... 61
CSlaveX ... 61
CRequest ... 61
CResponse ... 62

Additional Information ... 63

Structures .. 63
Constants ... 67
Hart at a Glance ... 68
Data Types ... 75

Float IEEE 754 .. 75
Packed ASCII ... 76

Appendix .. 77

Abbreviations ... 77

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Overview 2

Overview

HartTools is a set of components used to provide applications

based on Hart communication on a Windows computer.

Figure 1: Components Architecture of Hart Tools 7.6

The Hart Tools are based on two native Windows DLLs. One for

the master functionality and the other one for the slave

services. For both a .NET component is provided.

The user may integrate the native DLLs or the .NET components

into his application.

FrameAlyst is a standard application for monitoring and

analyzing the communication streams. FrameAlyst is docking at

the Hart Master DLL (BaHartDrv76.dll).

Hart Master

BaHartX76.dll

Hart Slave

BaSlaveX76.dll

Standard Hart Device

Simulation

BaSlvStdDevSim.dll

FrameAlyst

Com Ports Com Ports

User

User User

C#, C++ and VB

Source Code

Examples

.NET Components

 Application

Examples

Native DLLs

.NET Component

User

The Hart device

simulation is also

available in source code

as a user example.

Hart Master

BaHartDrv76.dll

Generic Load Interface

for FrameAlyst and the

slave test client.

Hart Slave

BaSlaveDrv76.dll

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Overview 3

Because native DLLs can only be provided as 32 or 64 bit

assemblies, both versions are available in the packet.

.NET DLLs are avaible for three architectures.

Component Path CPU Description

BaHartDrv76.dll .\UserDLLs\System\x86\

WindowsSystem(32 bit)
x86 The Hart master DLL is also providing a monitor

interfaces for FrameAlyst and for the user.

.\UserDLLs\System\x64\

WindowsSystem(64 bit)
x64

BaHartSlv76.dll .\UserDLLs\System\x86\

WindowsSystem(32 bit)
x86 The Hart slave DLL is providing function s which

are needed by a Hart command interpreter.

.\UserDLLs\System\x64\

WindowsSystem(64 bit)
x64

BaHartX76.dll .\UserDLLs\App\

.\Debug\

.\Debug(x64)\

.\Debug(86)\

Any
x64

x86

The .NET Hart master component is an additional
shell to the master DLL.

BaSlaveX76.dll .\UserDLLs\App\

.\Debug\

.\Debug(x64)\

.\Debug(86)

The .NET Hart slave component is an additional

shell to the slave DLL.

BaSlvStdDevSim.dll .\

.\UserDLLs\App\

.\Debug\

.\Debug(x64)\

.\Debug(86)

The standard Hart device simulation serves to
purposes. One is to provide a slave simulation to

FrameAlyst and to provide an example of a slave

device simulation for the user.

BaHartFrameAlyst76.exe .\

.\UserDLLs\App\

.\Debug\

The FrameAlyst is the main application of the Hart

Tools package.

.\Debug(86) x86 A 32 bit compilation of the application is provided

to allow 32 bit debugging on a 64 bit machine.

Table 1: Components and Paths

Installation

The installation may be done into any directory. The solutions

for the example applications are available at the path

.\Examples\.

Note: The projects of the examples were generated with Visual

Studio 2019. Trying the examples with an earlier Version of

Visual Studio will not work.

On 64 bit platforms the installation provides the subdirectory

.\Debug(x86) for debugging 32 bit applications on a 64 bit

platform.

On 32 bit platforms the path .\Debug(x86) is not available

because all applications and components which are compiled for

Any CPU are automatically loaded as 32 bit modules.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Overview 4

Application Examples

Example Subject Description

HartDLL

C#

AppDeviceData.sln Device Data Manager This is a more complex example implementing the handling of

data of various kinds.

ConnectAndRead.sln Connection, Device Info The Example demonstrates the usage of the connection
information and the BHDrv_IsServiceCompleted method.

CsGetCyclicData.sln Cyclic Data Callback The example is showing how cyclic data is collected from the
HartDLL (burst mode handling). The polling and the callback

mechanisms are demonstrated.

GetUnIDbyTag.sln Data Link Service The example demonstrates the usage of the function

BHDrv_ConnectByTagName of the HartDLL.

MultiThreadingDLL.sln More than one Thread The example demonstrates how to use several threads for Hart

communication with the HartDLL. Two worker threads are used.

CsRdWrRangeAndTag.sln Read and Write Data In Hart commands usually more than one parameter is
communicated. Here the handling is demonstrated.

SendExtCommand.sln Hart 7, Service Callback Sends a 16 bit command and demonstrates the use of the service
callback for service completion.

C/C++

UsingBaHartDrv.sln BaHartDrv76.h A little console application interfacing to the DLL.

Microsoft Office

UsingHartDLL.xlsm VBA Macros Excel can be used to communicate through a Hart Network.

Visual Basic

VbRdWrRangeAndTag.sln VB Language The example is showing the use of HartDLL is used in Visual

Basic.

Python

HartDLL-Example.py Python The example is showing the use of HartDLL with the Python
interpreter

Visual Studio Code

Workspace file BaHartDrv76.h A little console application interfacing to the DLL.

HartX

C#

CsUsingHartX.sln .NET Objects Demonstrates how to use Hart as a .NET object.

MultiThreadingX.sln More than one Thread Demonstrates how several instances of HartX are handled.

Microsoft Office

ReadPVs.xlsm Collecting Data The example reads the dynamic values from a Hart slave.

Visual Basic

VbUsingHartX.sln Using .NET in VB The example how the HartX is integrated into a VB application.

Com port must be set in the source code of frmMain.vb.

SlaveX

UserDevSimSlave.sln Salve Device Simulation It is much easier to develop the logic of a device in a PC

simulation using Visual Studio.
The solution is containing two projects. One for a user slave

simulation and another one for a simple test client.

Table 2: Examples for the HartDLL, SlaveDLL, HartX and SlaveX

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Overview 5

Directory Structure

After installation the following directory structure is created.

Figure 2: Directory Structure after Setup

Native DLLs for the system

paths.

User’s Path

Hart Tools 7.6

CommonC

C++

HartDLL

C#

Visual Basic

Interfaces to the DLLs (and objects)

GetCyclicData

ConnectAndRead

RdWrRangeAndTag

GetUniqueIDbyTag

HartX

C#

Visual Basic

Debug

CommonC#

CommonVb

Documentation

Examples Testbench for 32 bit components on a

64 bit machine.

Testbench for all components built for

any cpu.

Common
AppDeviceData

Multithreading

VbUsingHartX

RdWrRangeAndTag

MultiThreading

UsingHartX

SlaveX

UserDevSimClient

SendExtCommand

 Test Paths

 Example Applications

Excel

Debug(x86)

UserDLLs

System

App .NET components for the user

application.

FrameAlyst and required

components.

UserDevSimSlave

UsingBaHartDrvCpp

Excel

UsingHartDLL.xlsm

VSCode

UsingBaHartDrvVSCode

ReadPVs.xlsm

SlaveDLL

C# UsingSlaveDLL

Python

HartDLL-Example.py

Debug(x64)

Testbench for all components built for

x64, required for Office64.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 6

Getting Started

Debugging Example Projects

The main directory, were the Hart Tools 7.6 had been installed

to, contains only the FrameAlyst and three examples which had

been built for any CPU.

There are two directories for trying the examples using Visual

Studio. Debug is used for modules which are built for any CPU

and Debug(x86) is used for 32 Bit outputs.

CommonC, CommonC# and CommonVb are containing modules

of common use such as header files, C# sources and Vb sources

for interfaces and objects.

There are various examples available for different languages

and platforms. They are mostly developed with Visual Studio

2019.

The solution and the project for an example are located in the

directory which is named as the example solutions.

Note that most of the examples are delivering an 64 Bit output

(any cpu) and a 32 bit output as well. The results are exported

to the paths Debug and Debug(x86).

Slave Simulation with FrameAlyst

In Hart Tools 7.6 the slave simulation is working completely

separated from the Hart Master DLL, which is also used by

FrameAlyst. The slave simulation is written in C# and using the

component SlaveX.

However the slave simulation is realized as a .NET component

and requires a host system to load and run the component. At

present the FrameAlyst is the only host who is loading the slave

.NET assembly.

Instead of using physical com ports you may also use a pair of

virtual com ports such as provided by Serial Port Kit or similar

software solutions.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 7

Select the com port used by the master in the Home-Tab of

FrameAlyst.

Be sure that master and slave are activated.

 The slave assembly of the slave simulation has to be loaded

(BaHartStdDevSimulation.dll) and the com port of the slave has

to be set in the Slave-Tab

After these settings the Commands-Tab of FrameAlyst

can be used to test the functionality of the slave

simulation.

Slave Simulation with Test Client

The directory Examples is containing a solution with

two projects. One project is a custom build Hart slave

written in C#.

The other project is a test client to load and run the

slave simulation DLL.

The implementation is supporting all universal commands and

the common practice commands 34, 35, 38, 48 and 512.

The slave is simulating the 4 PVs and is calculating the current

and the percentage values from the range.

The debug session is started by executing the test client.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 8

HartDLL (Client + OSAL)

Service Processing Flow Diagram

Figure 3: Polling for Service Completion

BHDrv_OpenChannel Register at a com port

BHDrv_ConnectByAddr Get the unique identifier of the device

BHDrv_DoCommand

BHDrv_IsServiceCompleted

BHDrv_FetchConfirmation

Poll for service completion

Get the resulting data

Send next command

BHDrv_CloseChannel

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 9

Because command 0 is the only command in Hart which is working with the short address

(0..15/0..63) the unique identifier has to be fetched from the device to use it for the other

commands. The unique identifier can be read by the commands 0, 11 and 21.

There are three ways to wait for the completion of a service. Picture 1 is showing the no wait

mode. In the no wait mode the client program has to poll the DLL by calling

BHDrv_IsServiceCompleted.

Figure 4: Using the Wait Mode of the DLL

When a service is processed using the function

BHDrv_DoCommand with the option flag DRV_WAIT the

program is returning when the service is totally completed even

if there are errors or if the device is not responding.

Waiting for a service results in a small delay of approximately

250 ms.

Note: If a device is not responding, the function delay for a

multiple of the number of retries which had been configured by

the function BHDrv_SetConfiguration.

BHDrv_OpenChannel Register at a com port

BHDrv_ConnectByAddr Get the unique identifier of the device

BHDrv_DoCommand

BHDrv_FetchConfirmation Get the resulting data

Send next command

BHDrv_CloseChannel

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 10

The third method is to register a callback function from the

application software. In this case the DLL will call back as soon

as any service of that application is completed.

Figure 5: Using the a Callback Function for the DLL

The time between the call of the callback function and the

execution of the invoked function is not determined because it is

given by the Windows messaging system. But usually this time

is short if the application is not busy in another event

procedure.

BHDrv_OpenChannel Register at a com port

BHDrv_ConnectByAddr Get the unique identifier of the device

BHDrv_DoCommand

BHDrv_FetchConfirmation Get the resulting data Send next command

BHDrv_CloseChannel

BHDrv_RegisterEventCallback Register a callback function

UserServiceCallback (BeginInvoke)

UserServiceCallback (Invoked)

UserServiceCallback (BeginInvoke)

UserServiceCallback (Invoked)

Close the channel at the end of the session

BHDrv_FetchConnection Get the unique ID

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 11

Principle of Operation

Figure 6: The Internal Structure of the DLL

The figure above shows that the DLL is using is using its own

thread for the real time application. Thus the calling thread may

be of any kind. Even if the DLL is waiting for the completion of

the service it is taking the calling thread into sleep mode.

Figure 7: The DLL can be used by different Threads

The DLL may be called from several threads. The functions and

communication services are thread safe. Each thread should

register explicitly to get its own handle.

User Application

DLL Interface Functions

Service Handler

Hart Protocol Thread

PC Com Port

Done?

Start Service

No

Yes

Sleep 10 ms

Real time

functionality

HART MODEM

BaHartDrv76.dll

BaHartDrv76.dll(1)

User Application

Thread 1 Thread 2 Thread 3

BaHartDrv76.dll(2)

BaHartDrv76.dll(3)

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 12

Excel

Double click the file

UsingHartDLL.xlsm (Examples->HartDLL->Excel). Excel opens

and appears with a button on one of the sheets. Press the

button and the Visual Basic Editor will appear because the

program was stopped at a breakpoint.

In most cases the program will stop because no device is

connected. If you connect a real or a simulated device to the

com port which was opened by

the software will reach another Stop statement providing the

Tag Name of the connected device.

Modules

While the module HartTest is containing

the little test program the module

HartInterface contains the necessary

structures and functions declarations.

The following is an example of the declaration of one of the

functions in the DLL.

The declaration of structures has to be done like the following.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 13

HartX (Client)

Service Processing Flow Diagram

If the wait flag is set in the call of DoCommand the following

program flow is executed.

Figure 8: HartX Service Flow (waiting for service)

BHDrv_OpenChannel Register at a com port

BHDrv_ConnectByAddr Get the unique identifier

of the device

BHDrv_DoCommand

BHDrv_IsServiceCompleted

BHDrv_FetchConfirmation

Poll for service

completion

Get the resulting data

HartX.DoCommand

HartX.DoCommand

These services are
automatically performed by

HartX if necessary.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 14

If the wait flag is cleared in the call of DoCommand will return

immediately. After the service completion an event procedure

will be called.

Figure 9: HartX Service Flow (not waiting for service)

BHDrv_OpenChannel Register at a com port

BHDrv_ConnectByAddr Get the unique identifier

of the device

BHDrv_DoCommand

BHDrv_IsServiceCompleted

BHDrv_FetchConfirmation

Poll for service

completion

Get the resulting data

HartX.DoCommand

These services are
automatically performed by

HartX if necessary.

If the command is sent using
the HartDLL the call is
returning immediately. A timer control is used to

poll for the completion of the
service.

HartX.CommResult

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 15

Principle of Operation

Figure 10: The Internal Structure of the DLL

The figure above shows that the HartX is using is using its own

thread for the real time application. Thus the calling thread may

be of any kind. Even if HartX is waiting for the completion of the

service it is taking the calling thread into sleep mode.

Figure 11: The DLL can be used by different Threads

HartX may be called from several threads. The functions and

communication services are thread safe.

User Application

HartX Functions

Service Handler

Hart Protocol Thread

PC Com Port

Done?

Start Service

No

Yes

Sleep 10 ms

Real time

functionality

HART MODEM

BaHartX76.dll

BaHartX76.dll(1)

User Application

Thread 1 Thread 2 Thread 3

BaHartX76.dll(2)

BaHartX76.dll(3)

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 16

Visual Studio

Open Visual Studio and create a new project for a Windows

Forms Application.

It is not necessary to install HartX76 on the toolbar. A simple

reference to the library is enough.

The best way is to select the component from the path xAnyCPU

because this library can be used in a 32 bit as well as in a 64 bit

environment.

The next step is to set a reference in the namespace section.

namespace TestHartX

{

 using BaHartTools76.HartX;

 public partial class frmMain : Form

 {

 public frmMain()

 {

 InitializeComponent();

 }

 }

}

You should not forget to handle the licensing issue. Therefore a

reference to the license module is set.

I recommend to include the module as a link to make sure that

the module is shared and remains on its original place.

A variable is required to store a reference to the HartX.

 public partial class frmMain : Form

 {

 private CHartX hartX = null;

 public frmMain()

 {

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 17

The instance of HartX is inserted in the form load event handler.

With setting the com port the HartDLL is loaded by the HartX

and a channel for the communications is opened.

But before setting the com port the license has to be set in the

HartX.

 private void frmMain_Load(object sender, EventArgs e)

 {

 this.hartX = new CHartX();

 this.hartX.ValidateLicense

 ("30-Days-Trial-User-License",

 "Ea58v60F-x3jk-wi9n-RrI3-7c072aA6ae0B");

 this.hartX.ComPort = 2;

 }

A button and a text box are used to perform some action.

The code required for reading the tag name is very short.

private void butGetTag_Click(object sender, EventArgs e)

{

 if (this.hartX.IsValidComPort)

 {

 // Read the tag name

 this.txtTagName.Text = "reading ...";

 this.hartX.XReqLen = 0;

 this.hartX.DoCommand(13, true);

 if (this.hartX.LastError == CHartX.EN_LastError.ERR_Success)

 {

 this.txtTagName.Text = this.hartX.P13TagName;

 }

 else

 {

 this.txtTagName.Text = "Error!";

 }

 }

}

When clicking the button 'Get Tag Name' the following

communication sequence is shown by FrameAlyst.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 18

The HartX is firstly sending command 0 to get the unique

identifier. Then the command 13 is used to get the Tag Name.

Excel

Before you can start to use VBA in Excel you have to activate

the developer tabs in Options->Customize Ribbon.

To be sure that your macros (VBA program) are saved too you

have to store the file as macro-enabled workbook.

The example is using a button for starting and a textbox for the

com port number.

HartX is not a .net control but only a component. Therefore it

has to be addressed by a reference. VBA does not accept a

reference to the dll but to the type library (tlb) file.

The reference has to be set in the code

Window which is opened by the

selection of ‘View Code’ in the

Developer tab.

In the code window the

menu Tools has the menu

item References. After a

click on this option the

reference select Window

opens.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 19

Click on browse and navigate to the tlb of the HartX.

Next is to declare an object using the HartX reference.

The example is coded in the event procedure of the button.

The first call of the HartX should be the call of the

ValidateLicense method in order to set the HartDLL into a

functional mode.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 20

However the simulation of PVs also works without any License

code.

The only thing to do for the communications is to set

the com port to which the Hart device is connected to.

The property SimPvEnabled is setting the simulation

mode of the HartX. If this mode is set the PVs are

simulate between values set by the SimulateAmplitude

property.

The ‘main program’ of the example is a for loop reading

two PVs from the device for 20 times and writing the

results to the worksheet.

The call of DoAction is driving the simulation of the PVs

and simulates a delay of 200 ms like the

communication would do. In the case the simulation is

switched of DoAction would run the Hart protocol

activities. After running the example the worksheet will

look as below.

Running it with the simulation switched off, the example will

communicate with the real device.

The worksheet may look like it is shown below.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 21

If you run FrameAlyst during the session you can see the

communication activities.

Before starting to accept the command 3 requests HartX is

automatically sending command 0 to retrieve the unique

identifier from the device.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 22

SlaveDLL (Server + OSAL)

Of course, a hard slave simulation can also only be built on the

basis of the slave DLL. This example shows how to do this.

To make the example clear, the structure is as simple as

possible. The appearance of the client is as follows.

As soon as the correct com port, baud rate and polling address

have been selected, the slave can be enabled and responds to

the commands of a connected master.

With the other slave simulations, the simulation was integrated

in a dll. In this example, however, everything takes place in one

application.

The management of the slave, if you can call it that, is housed

in a simple timer.

private void Tim50_Tick(object sender, EventArgs e)
{
 switch (this.status)
 {
 case EN_Status.IDLE:
 status = EN_Status.READY;
 break;
 case EN_Status.READY:
 this.handleOfService = HartSlaveDLL.BHSlv_GetRequest(this.handleOfChannel,
 ref command, ref indInfo, ref datalen, ref data[0]);
 if (this.handleOfService != HartSlaveDLL.INVALIDserviceHandle)
 {
 status = EN_Status.WAIT_RESPONSE;
 }
 break;
 case EN_Status.WAIT_RESPONSE:
 CommandInterpreter();
 break;
 }

When working with baud rates higher than 1200 bit/s, such a

simple timer is no longer sufficient and the developer should

consider using a worker thread that works in ms cycles and

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 23

implements an asynchronous connection to the application.

Such a worker thread could represent a cycle of 1 ms.

The command interpreter is extremely simple. But the example

is only intended to show how such an application works in

principle.

private void CommandInterpreter()
{
 byte response1 = 0;
 byte response2 = 0;

 switch (this.activeCommand)
 {
 case 0:
 bytesOfData[0] = 254;
 bytesOfData[1] = dllconfiguration.ManufacturerID;
 bytesOfData[2] = dllconfiguration.DeviceID;
 ...
 bytesOfData[21] = 0;
 countOfBytes = 21;
 response1 = 0;
 response2 = 0;
 HartSlaveDLL.BHSlv_PutResponse(..., response1, response2);
 this.status = EN_Status.IDLE;
 break;
 case 1:
 bytesOfData[0] = 32; // Temperature unit
 HartSlaveDLL.BHSlv_PutFloat(23.00f, 1, ref bytesOfData[0],
 HartSlaveDLL.MSBfirst);
 this.countOfBytes = 5;
 response1 = 0;
 response2 = 0;
 HartSlaveDLL.BHSlv_PutResponse(..., response1, response2);
 this.status = EN_Status.IDLE;
 break;
 default:
 countOfBytes = 0;
 response1 = 64;
 response2 = 0;
 HartSlaveDLL.BHSlv_PutResponse(..., 64, 0);
 this.status = EN_Status.IDLE;
 break;
 }
}

The connection to the SkaveDLL takes place exactly like the

connection to the HartDLL via a corresponding C# file

(BaHartSlv76_Iface.cs).

[DllImport("BaHartSlv76.dll", CharSet = CharSet.Ansi)]
// The function allocates the selected com port if possible and starts its own working
// thread for accessing Hart services. The value which is returned is a handle which
// has to be passed to all functions which are requesting any access.
// comPort: Number of the PC com port (1..255)
// baudRate: Bits per second
// return: Com port could not be registered, Any other value: Registration successful
public static extern int BHSlv_OpenChannel(int comPort, int baudRate);

[DllImport("BaHartSlv76.dll", CharSet = CharSet.Ansi)]
// It is required to call this function at least when the application is terminating.
// channel: The handle which was returned by OpenChannel
public static extern void BHSlv_CloseChannel(int channel);

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 24

SlaveX (Server)

Test Client

Since the slave simulation is only one component that is

implemented in the form of a dll, you need a Windows process

that loads this library. A simple executable program, the

appearance of which is shown above, is sufficient for this.

The client loads data from the simulations dll via a more or less

standardized interface and displays them.

The solution (UserDevSimSlave.sln) is located in the examples

area in the SlaveX directory.

The projects for the test client and the slave simulation are

located in the associated subdirectories.

Slave Simulation

On the left you can see how the projects are displayed in the

solution explorer in Visual Studio 2019.

The hard slave simulation is located in the UserDevSimSlave

project and starts in the CBaHartDevSim.cs module.

To simplify debugging, I recommend first marking the

UserDevSimClient project as the start project.

There are two options for configuring the environment. In

general you should choose 'Debug' with AnyCpu, because then

it doesn't matter whether the computer works with 32 or 54 bit.

Debug - x86 is only recommended if you want to debug a 32-bit

environment on a 64-bit computer.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 25

Using FrameAlyst as Debugging Master

Of course you can also use FrameAlyst for testing the Hart

communications. The diagram below shows how such a

configuration works.

Figure 12: Using FrameAlyst as Master

The Debug subdirectory should be used.

Please note that the native DLLs (BaHartSlv76.dll and

BaHartDrv76.dll) are not found in the debug directories but in

the Windows system directories for 32 or 64 bit libraries.

The correct com port must be selected in the slave test client.

In addition, the slave must be activated.

The correct com port must be selected in FrameAlyst.

 Furthermore, the master must be activated in FrameAlyst.

Slave DLL Test

Client

UserDevSimClient76.exe

Slave Device

Simulation DLL

(CBaHartDevSim)

UserDevSimSlave76.dll

COM6

Hart Analyser and

Test Tool

(Client)

BaHartFrameAlyst76.exe

Hart Master DLL

(HAL)

BaHartDrv76.dll

COM7

SlaveX DLL

(CHartX)

BaSlaveX76.dll

Hart Slave DLL

(HAL)

BaHartSlv76.dll

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 26

User Slave DLL in FrameAlyst

Of course, the slave user simulation can also be loaded in

FrameAlyst. The following steps are necessary for this.

First, the slave emulation must be activated in FrameAlyst. This

is done on the 'Home' tab.

Next, the check mark for UserDLL must be set and the device

simulation DLL must be loaded using the Load button.

The display then looks like it is shown on the left.

However, a valid com port must now be selected.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 27

Python Example

The module demonstrates the use of the HartDll from HartTools

7.6. It is kept very simple and shows the basic procedure for

loading and using the Windows DLL HartDrv76 in Python 3.7.9.

The example is loading the DLL, registering the license and

establishing a connection with a hart slave.

In fact, the whole implementation consists of a single

module. The references and search paths filter are empty.

The main part of this program is shown below.

Load the dll
Hartdll = windll.LoadLibrary("BaHartDrv76.dll")
Register license
Hartdll.BHDrv_ValidateLicense("30-Days-Trial-User-License".encode(),
 "Ea58v60F-x3jk-wi9n-RrI3-7c072aA6ae0B".encode())
Open a channel on com port
myhandle = Hartdll.BHDrv_OpenChannel(comport)
Connect to a device if it is a valid com port
Address = 0, WaitForService = 1, NumRetries = 2
if myhandle != -0x1:
 print(" Connecting to device at address ", address)
 print(" Waiting for service completion ..")
 myservice = Hartdll.BHDrv_ConnectByAddr(myhandle, address, 1, 2)
 if myservice != -0x1:
 Hartdll.BHDrv_FetchConnection(myservice, byref(connectionData))
 if connectionData.ServiceCode == 5:
 print(" ------ Device Data ------")
 print(" Manufacturer Id: ", connectionData.ManIdByte)
 print(" Device Id: ", connectionData.DevId)
 print(" Command Response: ", connectionData.RespCode1)
 print(" Device Status: ", connectionData.RespCode2)
 print(" ------ Hart DLL ---------")
 print(" Service Completion Code: ", connectionData.ServiceCode)
 else:
 print(" ------ Hart DLL ---------")
 print(" Service Completion Code: ", connectionData.ServiceCode)
 else:
 print(" HartDLL out of service handles!")
else:
 print(" Could not open com port: ", comport)
Close channel if valid
if myhandle != -0x1:
 Hartdll.BHDrv_CloseChannel(myhandle)

This shows a certain superiority of an interpreter like Python.

Python has fully implemented handling of DLLs. Therefore,

special declarations are not necessary when dealing with the

Hart DLL. Only the structures that are given to the DLL as

records need to be declared, since the Python interpreter cannot

guess that.

Running the program delivers the output as it is

shown on the left.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 28

Visual Studio Code Example

Although Visual Studio Code is only an

editor, it can be configured extensively.

Since VSCode is becoming more and more

popular, I've set up an example Hart DLL

on top of this software.

It is the same software as in the

UsingBaHartDrvCpp example.

A GNU compiler was used for

demonstration purposes. It is the MinGw

version. To learn how to integrate MinGw

into VSCode, please follow this link:

https://code.visualstudio.com/docs/cpp/config-mingw.

In the examples you will find the VSCode variant in a separate path, as shown on the left.

The application name is

UsingBaHartDrvVSCode. To open ot VSCode

I created a workspace. This file is named:

UsingBaHartDrvVSCode.code-workspace.

The screenshot on the left shows the division into the individual

modules. Here, as an exception, I took the representation in

Visual Studio 2019, since VSCode is not necessarily a prime

example of clarity. The dependencies are implemented in the

VSCode project in the associated makefile, which you can find in

the workspace path (see above).

The output directory is the general debug directory for 'Any

CPU' and 64 bit modules.

I don't want to leave one special feature unmentioned. While

the '02-Common' subdirectory contains modules that are valid

for all platforms, the 03-Windows directory is intended for the

components that are used specifically for Windows.

The following shows how the code from the example application

is further realized.

The outputs and inputs are made via a console. Behind this is

access to the Windows terminal. The applied methods are

defined in the CVConsole class.

https://code.visualstudio.com/docs/cpp/config-mingw

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 29

For example, the function Init looks like this.

The realization here still looks relatively abstract for the most

part, but it already accesses certain functions of the console

API. A look at the ClearSteadyDisplay() function shows how

further refinements are being made.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 30

This function 'paints' the background and the border of the

white display area and is not quite as trivial as the two higher

levels. But the function is self-contained and therefore easier to

understand.

The integration of the HART protocol communication software is

designed similarly to the integration of the console. The basis

here is the HartTools DLL together with the header file

BaHartDrv76.h. The class with the access functions is declared

as follows.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Getting Started 31

The functions of this class then access the interface of the DLL.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 32

Detailed Descriptions

FrameAlyst

When the development of FrameAlyst was started it was mainly

targeted to simply monitoring Hart frames to detect errors in

the device implementation.

Later the tool was expanded to use the HartDLL for the

emulation of a master function.

In the recent years also a slave emulations were introduced.

While in the latest implementation either a slave or a master

emulation was available today the new FrameAlyst is supporting

both functionalities at a time.

Features

The main features which are supported by FrameAlyst are the

following.

• Master emulation

• Slave emulation

• Slave DLL interface

• Trigger functions

• Filter functions

• Scripting

• Command data decoding

• Storing recorded data

• Test and diagnostic functions

• Integrated services

• Coding and Decoding

• Data syntax editor

• Data logging in xml-format

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 33

Functions and Menus

Common Elements

The handling of FrameAlyst is based on tabs rather than menus.

Display Items (Frames)

Com port status.
Number of recorded

frames.

Trigger status

indication.

Time duration of the frame in

ms.

Delimiter of the frame.

First character:
 L = long address

 S = short address

3 character frame type
 STX = master request

 ACK = slave response

 BCK = burst

Last character:

 P = primary master address

 S = secondary master address

Preamble bytes

Address: 1 or 5 bytes

Command
Length of

response data.

Response code.

Device status.

Data.

Check byte

Frame numbers

.

Indication of recording.

Time in ms since end of

previous frame.

Switch monitoring on/off.

Repeat last activity.

Show and hide the emulated

slave.

Clear all buffers and start

new monitoring session.

Hide tabs display to have

more space for frames.

Show users manual.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 34

File Menu

The frames are still stored in the format which was used in the

past. However when saving the frame data you may also select

an xml format or html format.

Home Menu

Start new monitoring

session.

Select all frames.

Exit FrameAlyst.

Load recorded frames

from file.

Store recorded frames in

a file.

Print all frames.

Print selected frames

only.

Show the frames in the

standard browser.

Preambles: 2..22
Master: Primary, Secondary

Activate master functions Activate slave emulation

Switch record on/off

Options for the display of

frames.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 35

Hart Commands Menu

Trigger/Filter Menu

Repeat most recent

activity cyclically or

once.

Sending a command
works only in master

emulation mode.

List of additional
commands..

Some commands

require request data to

be edited.

Selection of a new slave

poll address is required

for command 6.

Support of the extended

command (16 bit)

requires editing.

The triggered frame is
marked.

Refresh the display.

Number of points to be

shown before and after

the trigger.

Regarding the device
status triggering on

single bits is possible.

Refresh the display.

Switch off trigger. Filtering is used to suppress the display of

certain frames. However, recording is still

continueing in the background.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 36

BaHartFrameLayst76.exe

BaHartStdDevSimulation.dll

BaHartSlv76.dll

BaHartX76.dll

Slave Menu

FrameAlyst able to load a DLL for the

simulation of a slave device. This DLL is a

class library written in C#. Thus it is also

possible for the user to provide another slave

device DLL written in C#.

The device simulation uses BaHartX76.dll

which is a shell for the native library

BaHartSlv76.dll.

Figure 13: Slave Emulation Architecture

The slave may be configured through FrameAlyst.

The slave interface of the HartDLL allows the developer of a

Hart master device to simulate any slave functionality and any

erroneous behavior of a Hart slave device.

Because the slave is running through a com port it can be be

part of a multidrop environment.

The slave DLL may be

loaded.

Console output for the

slave simulation DLL.

Some settings are required to control the

slave emulation/simulation DLL.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 37

Options Menu

Test/Diagnostic Menu

The above display was generated by using the filter for the

suppression of requests.

The display colors may

be customized.

If FrameAlyst is top
most it may no more be

overlapped by other

windows.

Specifies how many
times the master should

retry a service if en error

occurs.

If this is checked, the

master automatically
repeats a service if busy

or delayed response is

reported.

Some timing values may be

modified.

Jabber octets (ghost bytes) are
sometimes generated by the MODEMs

respectively electronics. Usually they

are not recorded.

Any byte stream may be

sent by the master for test

purposes.

In some cases a receiver may cause problems

if jabber octets appear at the connection. The

user can test this by making the master to

send those ghost bytes.

For the testing of (e.g.) multiplexer applications
it could be helpful to use the unique identifier

directly.

A simple quality analysis is provided.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 38

Additional Features

Store in Xml and Html Format

 If you select the file

extension .frax, the frames

will be strored in xml

format.

Alternatively you may also

choose an html format as a

documentation of the

debug session.

An example of an xml

output is shown on the

following page.

Xml Format Example

Regarding Html format you may either store the records in an

Html file or click ‘html’ in the print functions. The print function

for ‘html’ is opening your standard browser directly to display

the frames.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 39

Html Output Example

Services Menu

Services are some more complex functions as only sending a

command.

The services are only working if the FrameAlyst is using the

master emulation.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 40

Toggle Burst Mode

This service is handling command 109.

Set Poll Address

Set slave poll address is handling command 6. Note: Hart5 is

only supporting addresses 0..15 while Hart 7 has a range of

0..63.

Search Device

Edit/Set Long Tag

The long tag is an iso latin-1 string of a length of a maximum of

32 characters. If it contains less than 32 characters it is

terminated by 0x00.

Activate Hart 6/7

There is no form provided which is used to realize this mean.

The service is using commands 7 and 6 to signal the slave

device that a Hart 6/7 host is connected.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 41

Handle Device Data

This service is reading the main information from a device.

Set Tag, Descriptor and Date

This application is setting the short tag, the descriptor and the

date.

Set Range

The service is trying to write the upper and the lower range

value of the primary variable of a device.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 42

Edit and Run Scripts

The example above is sending the commands 0, 18, 3 and 35.

The script may be stored in a file and be loaded from a file. The

active script is always stored in the settings of the software and

automatically reloaded after the start of FrameAlyst.

If command 255 is specified in the script, the data will be sent

as is not formatted as a Hart frame.

Use data syntax editor.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 43

Decoding Data in a Frame

By using the right mouse button a context menu will be

displayed.

Integer

Float

HartUnit

PackedASCII

Text

Binary

Copy to AnyFrame

Select the decoding of your choice and the value will be

displayed in a tool tip.

Copy to SendAnyFrame

Select the whole frame, click the right mouse button and click

'Copy to AnyFrame' in the context menu.

The data will be copied to this function and the edit any frame

window will open.

It is also possible to copy only a part of the data.

It will appear as is in the any frame editing function.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 44

Copy Bytes to the Clipboard

The same functionality as shown allows also to copy data bytes

to the Windows clipboard by selecting 'Bytes to ClipBoard' in the

context menu.

Editing Data Syntax

Data syntax allows to easily specify a stream of bytes to be

send.

Prefix Type Example Comment

None Decimal or

Hexadecimal
24; 0x18 The software will determine the

required length

dec8, dec16,

dec24, dec32
Decimal number dec16; 1011

bin8, bin16,

bin24, bin32
Binary number bin8; 10001101

hex8, hex 16,

hex24, hex32

Hexadecimal

number
hex16; fa13

float32 Single precision float32; 1.34

float64 Double precision float64; 1.11e+48

pca6, pca12,

pca24
Packed ascii pca6;LITT1400 pca6 = 8 characters

pca12 = 16 characters
pca24 = 32 characters

str8, str16,

str32
Fixed length string str32;my-device Resulting byte array will be filled

by 0s

All items the prefix and the data lement are separated by a

colon ';'.

A few examples are shown above

However, it could be much easier to do this by the data syntax

editor.

When editing a command that requires data to be specified

the data syntax editor will open on a click of the edit button.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 45

Displaying the Slave Emulation

If the slave emulation is active, FrameAlyst provides a callback

to the slave simulation which is used by this software for

printing text with the printf function in the C libraries.

Handling of Erroneous Frames

Setting Custom Colors

The tab Options is providing User Colors.

The user colors can be edited by clicking

the button 'Edit Colors'.

The color editing form is shown in the

following.

The slave display may be

hidden..

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 46

Frame Display Examples

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 47

HartDLL (Client + OSAL)

The Hart Driver DLL is implementing the Hart communication

protocol by resolving the real time requirements.

The DLL is not (!) using any framework like MFC. It does not

use the Windows Registry and is not depending on any other

DLL except the standard Windows system DLLs. The DLL itself is

using standard Windows API calls and is therefore compatible to

all Versions of Windows with the 32 bit and 64 bit API.

The implementation of the Hart Protocol does not contain any

restriction to frame lengths like in Hart 5.x (e.g.). Therefore the

all communication functions can be used for devices supporting

Hart 5, Hart 6 or Hart 7.

Before using the communication the application software has to

register for a com port of the PC. This can be any com port from

1 to 255 including virtual com ports as they are used for USB

hart modems.

Distribution of Applications

The only thing you have to provide with your application is a

copy of the DLL (BaHartDrv74.dll). The best way is to provide a

copy of the 32 bit DLL (x86) as well as a copy of the 64 bit DLL

(x64). The files should be copied to the Windows system paths

for 32 and 64 bit DLLs.

Note: Be sure that the first call of your application is a call of

the validation function of the DLL (BHDrv_ValidateLicense)

passing a valid license code and the correct user name to the

DLL.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 48

Functions

All functions of the DLL are thread safe. The interface for the

functions calls is the same as the WINAPI functions. Thus the

DLL may be used by all applications which support calls to the

WINAPI functions.

Declaration Description

Operation
void BHDrv_ValidateLicense

(const char* userName,

 const char* license)

The first call into the DLL should be a call to this function passing the correct
license key and the user name to the software. The user name and the licensee

code is provided by the User License Certificate.

signed int BHDrv_OpenChannel

(unsigned short comPort)
The function allocates the selected com port if possible and starts its own working

thread for accessing Hart services. The value which is returned is a handle
(channel) which has to be passed to all functions which are requesting a service.

If it was not possible to open the com port the function is returning

INVALD_DRV_HANDLE to indicate the error. The com port number is limited
to the range of 1 .. 255.

void BHDrv_CloseChannel

(signed int channel)
It is required to call this function at least when the application is terminating.

void BHDrv_GetConfiguration

(signed int channel,

 T_strConfiguration* pstrConfig)

The function copies the configuration data to a data structure provided by the

caller.

void BHDrv_SetConfiguration

(signed int channel,

 T_strConfiguration* pstrConfig)

The function is setting all details required for the configuration. The data is passed

in a structure provided by the caller.

void BHDrv_GetRunTimeInfo

(signed int channel,

 T_strRunTimeInfo* pstrRunTimeInfo)

Return some information about the communication channel (e.g. if the use of a

FIFO at the UART was detected.

void BHDrv_RegisterEventCallback

(signed int channel,

 void (__stdcall*

 HandleServiceEvent)

 (signed int channel,

 unsigned short usEvent,

 signed int service,

 unsigned int data))

Register a function which is called when any requested service is completed. The

service handle of the service is passed to the called CB function.

HandleServiceEvent is the pointer to the handling function which is provided by
the user.

The parameter usEvent may have the values NONE, CONFIRMATION or

BURST_INDICATION. The parameter channel is passed to the application to
allow the support of more than one communication channel in one callback.

void BHDrv_ClearEventCallback

(signed int channel)
Deletes a previously registered callback. After a call of this function no more

callbacks to HandleServiceEvent will occur.

Connection Services
unsigned int BHDrv_ConnectByAddr

(signed int channel,

 unsigned char address,

 unsigned char qos,

 unsigned char numRetries)

Use command 0 with short address to get the connection information.

channel The handle which was returned by the OpenChannel function

address 0 .. 63

qos DRV_WAIT or DRV_NO_WAIT

numRetries 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.

unsigned int BHDrv_ConnectByUniqueID

(signed int channel,

 unsigned char * dataRef,

 unsigned char qos,

 unsigned char numRetries)

Use command 0 with short address to get the connection information.

channel The handle which was returned by the OpenChannel function

dataRef Pointer to a five byte array with the unique identifier

qos DRV_WAIT or DRV_NO_WAIT

numRetries 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.

unsigned int BHDrv_ConnectByShortTag

(unsigned int channel,

 unsigned char * dataRef,

 unsigned char qos,

 unsigned char numRetries)

Use command 0 with short address to get the connection information.

channel The handle which was returned by the OpenChannel function

dataRef Pointer to the byte array of a length of 6 packed ASCII bytes

qos DRV_WAIT or DRV_NO_WAIT

numRetries 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 49

Declaration Description
unsigned int BHDrv_ConnectByLongTag

(unsigned int channel,

 unsigned char* dataRef,

 unsigned char ucQOS,

 unsigned char numRetries)

Use command 0 with short address to get the connection information.

channel The handle which was returned by the OpenChannel function

dataRef Pointer to the 32 byte ISO Latin 1 string with the long tag
name

qos DRV_WAIT or DRV_NO_WAIT

numRetries 0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

void BHDrv_FetchConnection

(signed int service,

 T_strConnection* pstrConnData)

Fills a structure provided by the caller with the connection information. hSrv is the
service handle which was returned by one of the connection functions.

Note: After a call of this function the driver is deleting the service. hSrv is no

longer valid after calling FetchConnection once.

Communication Services
unsigned char BHDrv_IsSendClear

(signed int channel)
The function returns B_TRUE, if no more service is pending.

signed int BHDrv_SendAnyData

(signed int channel,

 unsigned char* dataRef,

 unsigned char dataLen)

Send any octet stream via the connected com port.

channel The handle which was returned by the OpenChannel function

dataRef Pointer to a native array of bytes

dataLen Number of bytes to be sent

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

The function is provided for debugging purposes allowing to send any stream of

data through the serial interface.
Note: It is very important to acknowledge this service by calling the function

FetchConfirmation after completion. Only with this call the service handle is

deleted.

signed int BHDrv_DoCommand

(signed int channel,

 unsigned char command,

 unsigned char qos,

 unsigned char* dataRef,

 unsigned char dataLen,

 unsigned long appKey,

 unsigned char* bytesUniqueID)

Send a command in the range 0..255.

channel The handle which was returned by the OpenChannel function

command Hart command (0..255) to be sent with the request

qos DRV_WAIT or DRV_NO_WAIT

dataRef Pointer to a native byte array which is sent as payload data

dataLen Length of the byte array

appKey Any value. The value which the user is setting here is returned
by the confirmation as is.

bytesUniqueID Five byte unique identifier of the addressed device

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

Do command can be used for the support of most of the Hart services including all

user specific commands.
Note: It is not(!) recommended to pass a function pointer through dwAppKey.

This will cause problems with 64 bit applications!

signed int BHDrv_DoExtCmd

(signed int channel,

 unsigned short command,

 unsigned char qos,

 unsigned char* dataRef,

 unsigned char dataLen,

 unsigned long appKey,

 unsigned char* bytesUniqueID)

Send a command in the range 0..65535.

channel The handle which was returned by the OpenChannel function

command Extended Hart command (0..65535) to be sent with the request

qos DRV_WAIT or DRV_NO_WAIT

dataRaf Pointer to a native byte array which is sent as payload data

dataLen Length of the byte array

appKey Any value. The value which the user is setting here is returned

by the confirmation as is.

bytesUniqueID Five byte unique identifier of the addressed device

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.
The extended command in Hart 6/7 is an extension which is using the byte

command 31 to carry a larger command within the data area. Therefore this

function was introduced more or less for the convenience of the HartDLL user.
The function is automatically taking care of the correct usage of command 31.

Note: It is not(!) recommended to pass a function pointer through dwAppKey.

This will cause problems with 64 bit applications!

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 50

Declaration Description
signed int BHDrv_DoBurstCommand

(signed int channel,

 unsigned char command,

 unsigned char qos,

 unsigned char* dataRef,

 unsigned char dataLen,

 unsigned long appKey,

 unsigned char* bytesUniqueID,

 unsigned char invertMaster)

Send a burst command (cyclic service) in the range of 0..255.

channel The handle which was returned by the OpenChannel function

ucCommand Hart command (0..255) to be sent with the request

ucQOS DRV_WAIT or DRV_NO_WAIT

pucReqData Pointer to a native byte array which is sent as payload data

ucReqDataLen Length of the byte array

dwAppKey Any value. The value which the user is setting here is returned

by the confirmation as is.

pucUniqueID Five byte unique identifier of the addressed device

invertMaster 0: do nothing, !=0: primary to secondary and visa versa

The function returns a service handle if successful or INVALID_SRV_HANDLE

if there was an error.

To send a burst command may be helpful for device developers or for debugging a
network.

Note: Even if the burst command is only sent and no response is received, it is

very important to acknowledge this service by calling the function
FetchConfirmation after completion. Only with this call the service handle is

deleted.

unsigned char BHDrv_IsServiceCompleted

(signed int service)
Returns T_TRUE if the service (service) was completed.

void BHDrv_FetchConfirmation

(unsigned int service,

 T_strConfirmation* pstrConfData)

Fills a structure provided by the caller with the service results information such as
the response codes and the response data (if any).

Cyclic Data Services
void BHDrv_CycSrvStart

(signed int channel)
The function is enabling the reception of incoming burst messages.
Note: If this function is called eventual existing messages in the drivers queue are

deleted, thus the reception of Hart burst messages starts with an empty queue.

However, before BHDrv_CycSrcStart is called incoming burst messages are
discarded.

void BHDrv_CycSrvStop

(signed int channel)
After the call of this function the reception of burst messages is halted. Messages

already in the queue may be read by BHDrv_CycSrvGetData.

unsigned char BHDrv_CycSrvGetData

(signed int channel,

 T_strCyclicData* pstrCycData)

Read cyclic data from the queue in the HartDLL.

The returned value indicates if cyclic data was fetched from the queue or not:

CYCDAT_OK or CYCDAT_NO_DATA.

void BHDrv_CycSrvRegisterCB

(unsigned int channel,

 void

 (__stdcall* pfSubscribeCycData)

 (T_strCyclicData* pstrCycData))

For asynchronous reading of cyclic data a callback function may be registered at
the DLL.

A pointer to a user function is passed, which is called when cyclic data was

received. The user function accepts the channel handle and a pointer to a structure
containing the received cyclic data.

void BHDrv_CycSrvUnregister

(signed int channel)
After this function was called no more callbacks will be done.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 51

Declaration Description

Decoding
unsigned char BHDrv_PickInt8

(unsigned char offset,

 unsigned char* dataRef)

Return the value of the byte in the byte array buffer pointed to by dataRef at the

position offset.

unsigned short BHDrv_PickInt16

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the integer 16 from the byte array buffer pointed to by dataRef

at the position offset. Assume that the most significant byte is the first if endian is

MSB_FIRST(0), which is the Hart standard.

unsigned long BHDrv_PickInt24

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the integer 24 from the byte array buffer pointed to by dtaRef
at the position offset. Assume that the most significant byte is the first if endian is

MSB_FIRST(0), which is the Hart standard.

unsigned long BHDrv_PickInt32

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the integer 32 from the byte array buffer pointed to by dataRef

at the position offset. Assume that the most significant byte is the first if endian is

MSB_FIRST(0), which is the Hart standard.

float BHDrv_PickFloat

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the single precision IEEE754 number from the byte array

buffer pointed to by dataRef at the position offset. Assume that the most
significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

double BHDrv_PickDouble

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the double precision IEEE754 number from the byte array
buffer pointed to by dataRef at the position offset. Assume that the most

significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

void BHDrv_PickPackedASCII

(unsigned char* sb,

 unsigned char stringLen,

 unsigned char offset,

 unsigned char* dataRef)

Generate a string and copy it to the buffer pointed to by sb. The final string should

have the length stringLen. The packedASCII source is a set of bytes in the byte

array buffer pointed to by dataRef.

Note: The string length has to by a multiple of 4 while the number of

packedASCII bytes is a multiple of 3.

void BHDrv_PickOctets

(unsigned char* dataDestination,

 unsigned char numOctets,

 unsigned char offset,

 unsigned char* dataSource)

Copy a number (numOctets) of bytes from the byte array buffer pointed to by

dataSource to the user buffer pointed to by dataDestination.

void BHDrv_PickString

(unsigned char* sb,

 unsigned char stringLen,

 unsigned char offset,

 unsigned char* dataRef)

This function does the same as BHDrv_PickOctets.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 52

Declaration Description

Encoding
void BHDrv_PutInt8

(unsigned char data,

 unsigned char offset,

 unsigned char* dataRef)

Insert an integer 8 into the byte array buffer pointed to by dataRef starting at the

position offset.

void BHDrv_PutInt16

(unsigned short data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert an integer 16 into the byte array buffer pointed to by dataRef starting at the
position offset. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void BHDrv_PutInt24

(unsigned long data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert an integer 24 into the byte array buffer pointed to by dataRef starting at the

position offset. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void BHDrv_PutInt32

(unsigned long data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert an integer 32 into the byte array buffer pointed to by dataRef starting at the

position offset. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void BHDrv_PutFloat

(float data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert a single precision IEEE 754 float value into the byte array buffer pointed to

by dataRef starting at the position offset. Start with the most significant byte if
endian is MSB_FIRST(0), which is the Hart standard.

void BHDrv_PutDouble

(double data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert a double precision IEEE 754 float value into the byte array buffer pointed to

by dataRef starting at the position offset. Start with the most significant byte if

endian is MSB_FIRST(0), which is the Hart standard.

void BHDrv_PutPackedASCII

(unsigned char* sb,

 unsigned char sLen,

 unsigned char offset,

 unsigned char* dataRef)

Insert a string of the length of sLen in packed ASCII format into the byte array

buffer pointed to by dataRef starting at the position offset.

void BHDrv_PutOctets

(unsigned char* dataSource,

 unsigned char dataLen,

 unsigned char offset,

 unsigned char* dataDestination)

Copy a number of dataLen bytes into the byte array buffer pointed to by

dataDestination starting at the position offset.

void BHDrv_PutString

(unsigned char* sb,

 unsigned char sLen,

 unsigned char offset,

 unsigned char* dataDestination)

This function does the same as BHDrv_PutOctets.

Table 3: HartDLL, List of Functions

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 53

HartX (Client)

The .NET Component HartX is implementing the Hart

communication protocol by resolving all the real time

requirements and coding as well as decoding issues.

The implementation of the Hart Protocol does not contain any

restriction to frame lengths like in Hart 5.x (e.g.). Therefore the

all communication functions can be used for devices supporting

Hart 5, Hart 6 or Hart 7.

Before using the communication the component has to select a

com port of the PC. This can be any com port from 1 to 254

including virtual com ports as they are used for USB modems.

Distribution of Applications

The user has to provide a copy of the component DLL and the

driver DLL (BaHartX.dll and BaHartDrv76.dll). The best way is to

provide a copy of the 32 bit native DLLs (x86) as well as a copy

of the 64 bit native DLLs (x64). The files should be copied to the

Windows system paths for 32 and 64 bit DLLs.

Note: Be sure that the first call of your application is a call of

the validation function of the DLL (HartX.ValidateLicense)

passing a valid license code and the correct user name to the

component DLL (the assembly).

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 54

CHartX

Properties

Name Type Acc Description

Operation/Control
AddrMode enum R/W AM_ShortAddress(0), AM_LongAddress(1)

AM_ShortTag(2) -> packed ASCII(6), 8 characters

AM_LongTag(3) -> string, 32 characters)

ComPort byte 0: None
1-254: Com port number (com port in use when set)

255: Reserved, do not(!) use

AddrTagShort string Short tag name used for addressing. The string should have a length of 8 and should

contain only capital letters.

AddrTagLong string Long tag name used for addressing. The string should have a length of 32.

ComState enum CS_OFF(0): No connection, CS_ON(1): Connection to device

Note: If ComState is toggled from CS_OFF to CS_ON a command for retrieving the
unique identifier is executed. This activity is not(!) generating an event.

BaudRate BR_1200(0), BR_9600(1), BR_19200(2), BR_38400(3),
BR_57600(4), BR_115200(5)

NoPreambles byte Number of preambles to be sent with a request (typically 5, range 5 .. 20)

PollAddress Poll address used to get the unique ID (0..63)

NewPollAddress Poll address to be set in the slave using action ACT_WrPollAddr.

NumRetries Number of retries in case of error (0..255)

MasterRole enum The initial master role when starting communications

MR_PrimaryMaster(0), MR_SecondaryMaster(1)

RetryIfBusy Indicates if the control should retry as long as the device is responding with busy1:

OPT_No(0), OPT_Yes(1).

LastError RO Most recent error: ERR_Success(0), ERR_NoComPortSelected(1),
ERR_InvalidComPort(2), ERR_ComError(3),

ERR_NoDeviceResponse(4), ERR_SlaveAddressError(5),

ERR_UndefinedError(6), ERR_ServiceInvokationError(7),
ERR_LicenseError(8)

LastErrorText string Text for the LastError value

UseUniqueID bool R/W Indicates if the unique identifier shall be used directly as it was entered by the user.

UniqueID byte[] Array of 5 bytes for the unique identifier.

UniqueId0 byte Long address byte 1

UniqueId1 Long address byte 2

UniqueId2 Long address byte 3

UniqueId3 Long address byte 4

UniqueId4 Long address byte 5

HandleOfChannel int RO Handle of channel which was returned by the HartDLL. This is meant for debugging
purposes.

DataLength byte Number of data bytes in the confirmation of a service. This can be used for debugging.

Response1 Response code for the command

CommandResponseText string Text for the response code 1.

Response2 byte Device status

DeviceStatusText string Text for the response code 2

Information
IsDeviceConnected bool RO Indicates whether the unique identifier could be read from the device.

IsValidComPort bool Indicates whether the selected com port could be opened successfully.

BusyCount int Returns the number of currently active aynchronous services. These are services which

had been started by DoCommand with the wait flag set to false.

1 This could cause a very large delay, has to be handled with care.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 55

Name Type Acc Description

Simulation
SimPvEnabled bool R/W Sets or gets a flag indicating whether the simulation for the four PVs is active.

SimAmplitude float The simulation is running Pv values between 0.0 and 1.0. SimAmplitude is the factor

to multiply the internal values with.

Parameter Properties

These properties are used to get portions of data from the recently conducted command.

Command 0 (Read Unique ID)

Usually this command is automatically executed if the control is not yet 'connected' to the device (unique identifier unknown).

p00Device byte RO Device ID (8 bit)

p00DeviceNumber uint 3 byte unique device ID

p00HardwRev byte Hardware revision

p00SoftwRev Software revision

p00VendorID Manufacturer/Vendor identifier

Command 1 (Read Primary Variable)

p01Pv float RO Value of process variable 1

p01PvUnit byte Unit code of process variable 1

p01PvUnitString string String for the unit of process variable 1

Command 2 (Read Current and Percentage)

p02Current float RO Value of the current output [mA]

p02Percent Value of the percentage 0..100 %

Command 3 (Read dynamic Variables)

p01Pv float RO Value of process variable 1

p01PvUnit byte Unit code of process variable 1

p01PvUnitString string String for the unit of process variable 1

p02Pv float Value of process variable 2

p02PvUnit byte Unit code of process variable 2

p02PvUnitString string String for the unit of process variable 2

p03Pv float Value of process variable 3

p03PvUnit byte Unit code of process variable 3

p03PvUnitString string String for the unit of process variable 3

p04Pv float Value of process variable 4

p04PvUnit byte Unit code of process variable 4

p04PvUnitString string String for the unit of process variable 4

Command 12 (Read Message)

p12Message string R/W Hart message, the string should have a length of 32.

Command 13 (Read Tag, Descriptor, Date)

p13DateDay byte R/W Day of month 1..31

p13DataMonth Month of the year 1..12

p13DateYear Year as offset to 1900

p13Descriptor string String of 16 characters for the description

p13TagName string String of 8 characters for the short tag

Command 14 (Read Transducer Information)

p14LoSensLimit float RO Lower sensor limit

p14MinSpan Minimum span

p14SensLimUnit byte Unit code for the sensor information (values)

p14SensSerNum uint 24 bit sensor serial number

p14UpSensLimit float Upper sensor limit

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 56

Name Type Acc Description

Command 15 (Read Device Information)

p15AlmSelCode byte RO Alarm selection code

p15LabDistCode Label distributor code

p15LoRange float Lower range value

p15RangeUnit byte Unit code for the range values

p15UpRange float Upper range value

p15WrProtCode byte Write protection
0: None

>0: Write protected

p15XferFuncCode Transfer function code

Command 20 (Read Long Tag Name)

p20TagNameLong string R/W The long tag name, the string should have a length of 32

X-Properties (Any Command)

xReqLen byte R/W Defines the length of the request data buffer

xOffset Defines the offset into the buffer for coding and decoding

xStringLen Defines the length of a string for coding and decoding

xPackedASCLen Defines the length of a packed ascii string

xHexDataDump string RO Returns a string with the hex dump of the buffer with a length of xReqLen

xInt8 byte R/W Sets or gets an 8 bit integer value in/from the buffer

xInt16 ushort Sets or gets an 16 bit integer value in/from the buffer

xInt24 uint Sets or gets an 24 bit integer value in/from the buffer

xInt32 uint Sets or gets an 32 bit integer value in/from the buffer

xFloat float Sets or gets a float value in/from the buffer

xDouble double Sets or gets a double value in/from the buffer

xString string Sets or gets a string of xStringLen in/from the buffer

xPacked_ASCII string Sets or gets a packed ascii string of xPackedASCLen in/from the buffer.

It very important to set the property xPackedASCIILen before accessing the property
xPackedASCII. The format PackedASCII stores 4 characters in three octets (24 bits),

using only 6 bits for each character. The xPackedASCIILen has to be set to the number

of octets used to store the string. Possible values are 3,6,9.. etc.. For instance a
xPackedASCIILen of 3 allows to access a string of a length of four characters.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 57

Methods

Declaration Description
bool Lock() The method is trying to lock against the access by other threads. However the method is waiting

for approximately 5 seconds. If the lock could not be placed in this time if will return false.

Note: Each lock has to be followed by a call of the Unlock method. Otherwise the system may be

blocked.

void Unlock() The method is removing a lock against concurrent access.

EN_LastError DoAction

(EN_Action Action, bool

wait)

The DoAction method is mainly used to handle the parameter properties.

EN_Action Action

ACT_None(0) Perform no action

ACT_RdPv(1)
Read the primary process variable and the unit (Command 1).

Update p01 properties.

ACT_RdCurrPerc(2)
Read the value for the current (4..20 mA) and the pv in %

(Command 2). Update p02 properties.

ACT_RdAllPv(3)
Read all available process variables (Command 3). Update p03

properties.

ACT_RdMessage(4) Read the message (Command 12). Update p12 property.

ACT_RdTagDescrDate(5)
Read Tag, Descriptor and Date (Command 13). Update p13

properties.

ACT_RdSensLimits(6) Read sensor limit data (Command 14). Update p14 properties.

ACT_RdRange(7) Read range data (Command 15). Update p15 properties.

ACT_WrMessage(8) Write message (Command 17). Use the p12 property.

ACT_WrTagDescrData(9)
Write Tag, Descriptor and Date (Command 18). Use p13

properties.

ACT_WrPollAddr(10)
Write a new poll address into the device. Use NewPollAddress

for this action.

ACT_ResetStatus(11)
Forces the control to forget the unique identifier of the most
recently connected HART device.

EN_LastError Connect() The method is retrieving the unique identifier (long address) from the Hart slave.
Note: This method waits for a response and does not generate an event.

void Disconnect() The method deletes the internally stored unique identifier and discards all outstanding services.

EN_LastError DoCommand

(byte command, bool wait)
The method is performing a Hart command in the range 0 .. 255. For the data send with the
request it is using xReqLen and the internal data buffer with the data bytes.

EN_LastError DoCommand

(ushort command, bool wait)
The method is performing a 16 bit Hart command. For the data send with the request it is using

xReqLen and the internal data buffer with the data bytes.

void Close() Has to be called when the application terminates.

Note: This method is simply setting the com port to 0 thus releasing the HartDLL.

string GetHartUnit

(byte UnitCode)
Returns the string associated with the 8 bit Hart unit code.

void FillBuffer

(byte FillValue)
Initialize all bytes in the internal buffer by the given FillValue.

void ValidateLicense

(string UserName,

 string License)

Call this function firstly after construction to activate all internal functions.

If the parameter wait is set, the service will be completed if the

function returns. Otherwise the event function CommResult will

be called after completion.

Functions declared to return EN_LastError will return

ERR_Success if the operation was successfully completed.

Events

Declaration Description
void CommResult

(CommResultEventArgs

 CompletedService)

The DoAction method is mainly used to handle the parameter properties.

CommResultEventArgs CompletedService

Command Command used for the service

IsExtCommand True if extended command

LastError Code of last error

LastErrorText Text of last error

UsedAction Action triggered, if 0 no action was triggered.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 58

SlaveDLL (Server + OSAL)

Like the HARTDLL for the master the SlaveDLL is providing

rudimentary services for the handling of the Hart protocol by a

slave implementation.

However, there are also some differences in the

implementation. In the following the term channel is missing. It

was replaced by the term channel.

Another issue is the connection. No connection services are

provided because the slave does not have to handle any

connection oriented details.

Functions

Declaration Description

Control
void BHSlv_ValidateLicense

(const char* userName,

 const char* license)

The first call into the DLL should be a call to this function passing the correct

license key and the user name to the software. The user name and the licensee

code is provided by the User License Certificate.

signed int BHSlv_OpenChannel

(unsigned int comPort,

 unsigned int baudRate)

The function allocates the selected com port if possible and starts its own working
thread for accessing Hart services. The value which is returned is a handle

(channel) which has to be passed to all functions which are requesting a service.

If it was not possible to open the com port the function is returning

INVALID_SLV_HANDLE to indicate the error. The com port number is limited

to the range of 1 .. 255.

void BHSlv_CloseChannel

(signed int channel)
It is required to call this function at least when the application is terminating.

void BHSlv_GetCommConfig

(signed int channel,

 T_strSlvCommSettings* config)

The function copies the configuration data to a data structure provided by the
caller.

void BHSlv_SetCommConfig

(signed int channel,

 T_strSlvCommSettings* config)

The function is setting all details required for the configuration. The data is passed
in a structure provided by the caller.

void BHSlv_RegisterEventCallback

(signed int channel,

 void (__stdcall*

 HandleServiceEvent)

 (signed int channel,

 unsigned short event,

 unsigned int service,

 unsigned int data))

Register a function which is called when any requested service is completed. The
service handle of the service is passed to the called CB function.

HandleServiceEvent is the pointer to the handling function which is provided by

the user.
The parameter usEvent may have the values NONE, REQUEST_RECEIVED or

BURST_REQUIRED. The parameter channel is passed to the application to allow

the support of more than one communication channel in one callback.

BHSlv_SetEventFlags

(signed int channel,

 unsigned short eventFlags);

Set the event flags mask.

void BHSlv_ClearEventCallback

(signed int channel)
Deletes a previously registered callback. After a call of this function no more
callbacks to HandleServiceEvent will occur.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 59

Declaration Description

Operation
signed int BHSlv_GetRequest

(signed int channel,

 unsigned short* command,

 unsigned short* indInfo,

 unsigned char* dataLen,

 unsigned char* bytesOfData);

The function is used for polling to get an indication if a master request was

received.

channel The handle which was returned by the OpenChannel function

command Return the command via this pointer.

indInfo Get additional info about the request.

dataLen Returns the number of payload bytes.

bytesOfData Returns the payload data.

The function returns a service handle if successful or INVALID_SLV_HANDLE
if there was an error.

void BHSlv_PutResponse

(signed int channel,

 signed int service,

 unsigned char dataLen,

 unsigned char* bytesOfData,

 unsigned char response1,

 unsigned char response2);

Provides all information to build the response for the recently received request.

channel The handle which was returned by the OpenChannel function

service The handle returned by the GetRequest function.

dataLen Number of bytes for payload data

bytesOfData Byte array for payload data

response1 Response code 1

response2 Response code 2

Decoding
unsigned char BHSlv_PickInt8

(unsigned char offset,

 unsigned char* dataRef)

Return the value of the byte in the byte array buffer pointed to by dataRef at the

position offset.

unsigned short BHSlv_PickInt16

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the integer 16 from the byte array buffer pointed to by dataRef

at the position offset. Assume that the most significant byte is the first if endian is

MSB_FIRST(0), which is the Hart standard.

unsigned long BHSlv_PickInt24

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the integer 24 from the byte array buffer pointed to by dtaRef

at the position offset. Assume that the most significant byte is the first if endian is
MSB_FIRST(0), which is the Hart standard.

unsigned long BHSlv_PickInt32

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the integer 32 from the byte array buffer pointed to by dataRef
at the position offset. Assume that the most significant byte is the first if endian is

MSB_FIRST(0), which is the Hart standard.

float BHSlv_PickFloat

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the single precision IEEE754 number from the byte array

buffer pointed to by dataRef at the position offset. Assume that the most

significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

double BHSlv_PickDouble

(unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Return the value of the double precision IEEE754 number from the byte array

buffer pointed to by dataRef at the position offset. Assume that the most
significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.

void BHSlv_PickPackedASCII

(unsigned char* sb,

 unsigned char stringLen,

 unsigned char offset,

 unsigned char* dataRef)

Generate a string and copy it to the buffer pointed to by sb. The final string should

have the length stringLen. The packedASCII source is a set of bytes in the byte

array buffer pointed to by dataRef.
Note: The string length has to by a multiple of 4 while the number of

packedASCII bytes is a multiple of 3.

void BHSlv_PickOctets

(unsigned char* dataDestination,

 unsigned char numOctets,

 unsigned char offset,

 unsigned char* dataSource)

Copy a number (numOctets) of bytes from the byte array buffer pointed to by

dataSource to the user buffer pointed to by dataDestination.

void BHSlv_PickString

(unsigned char* sb,

 unsigned char stringLen,

 unsigned char offset,

 unsigned char* dataRef)

This function does the same as BHDrv_PickOctets.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 60

Declaration Description

Encoding
void BHSlv_PutInt8

(unsigned char data,

 unsigned char offset,

 unsigned char* dataRef)

Insert an integer 8 into the byte array buffer pointed to by dataRef starting at the

position offset.

void BHSlv_PutInt16

(unsigned short data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert an integer 16 into the byte array buffer pointed to by dataRef starting at the
position offset. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void BHSlv_PutInt24

(unsigned long data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert an integer 24 into the byte array buffer pointed to by dataRef starting at the

position offset. Start with the most significant byte if endian is MSB_FIRST(0),

which is the Hart standard.

void BHSlv_PutInt32

(unsigned long data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert an integer 32 into the byte array buffer pointed to by dataRef starting at the

position offset. Start with the most significant byte if endian is MSB_FIRST(0),
which is the Hart standard.

void BHSlv_PutFloat

(float data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert a single precision IEEE 754 float value into the byte array buffer pointed to

by dataRef starting at the position offset. Start with the most significant byte if
endian is MSB_FIRST(0), which is the Hart standard.

void BHSlv_PutDouble

(double data,

 unsigned char offset,

 unsigned char* dataRef,

 unsigned char endian)

Insert a double precision IEEE 754 float value into the byte array buffer pointed to

by dataRef starting at the position offset. Start with the most significant byte if

endian is MSB_FIRST(0), which is the Hart standard.

void BHSlv_PutPackedASCII

(unsigned char* sb,

 unsigned char sLen,

 unsigned char offset,

 unsigned char* dataRef)

Insert a string of the length of sLen in packed ASCII format into the byte array

buffer pointed to by dataRef starting at the position offset.

void BHSlv_PutOctets

(unsigned char* dataSource,

 unsigned char dataLen,

 unsigned char offset,

 unsigned char* dataDestination)

Copy a number of dataLen bytes into the byte array buffer pointed to by

dataDestination starting at the position offset.

void BHSlv_PutString

(unsigned char* sb,

 unsigned char sLen,

 unsigned char offset,

 unsigned char* dataDestination)

This function does the same as BHSlv_PutOctets.

Table 4: SlaveDLL, List of Functions

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 61

SlaveX (Server)

SlaveX is providing a small set of objects used to build a

command interpreter easily and quickly.

A Hart slave is basically implementing a command interpreter

for the Hart protocol. This is based on the use of the Hart

communication services provided in the object HartSlave.

CSlaveX

Properties

Name Type Acc Description
IsValidChannel bool RO Returns true if there is a valid com port adressed by the channel.

ComPort byte Returns the comport number.

Status EN_Status Returns the status.

EN_Status : int

{

 IDLE = 0,

 READY = 1,

 WAIT_RESPONSE = 2,

 DISABLED = 3,

 UNKNOWN = -1

}

PrintCallback IntPtr WO Sets the pointer to a print callback function.

DataBase CDataBase RO Returns a reference to the database of the component.

Methods

Declaration Description
void Start(int comPort, int baudRate) Starts the simulation at a defined com port and a baudrate between 1200 to

115200 Bits/s

void Configure() Sets up internal data of the component using the static class CDataBase.

void Enable() Enables the component.

void Disable() Disables the component.

CRequest GetRequest() Returns an instance of the CRequest class if a request was detected by the
communication layers.

void PutResponse(CResponse reponse,

 byte devstatus)
Accepts the response to be sent and the HART device status.

void Print(byte row, string text) Print a text on the debug output of the client if any is provided.

CRequest

The object is passed to the command interpreter when a Hart

command was received by the communication DLL.

Properties

Name Type Acc Description
Command ushort RO The command that was passed with the request.

Len byte Number of bytes of productive data.

Data byte[] Returns an array of bytes with the payload data of the request.

Flags ushort Returns a bit stream which is not yet defined.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 62

Methods

Declaration Description
byte GetByte(byte offset) Returns the value of a 8 bit unsigned integer at the position (offset) in the data

of the request.

ushort GetInt16(byte offset) Returns the value of a 16 bit unsigned integer at the position (offset) in the

data of the request.

ulong GetInt24(byte offset) Returns the value of a 24 bit unsigned integer at the position (offset) in the

data of the request.

float GetFloat(byte offset) Returns the value of a 32 bit float as IEEE754 at the position (offset) in the

data of the request.

string GetPackedASCII(byte offset,

 byte len)
Returns the decoded string from a PackedASCII string at the position (offset)

in the data of the request. len is the number of bytes of the PackedASCII
coded string. Note: len has to be an integer multiple of 3, while the length of

the resulting string is a multiple of 4.

string GetString(byte offset,

 byte len)
Returns the string with length (len) at the position (offset) in the data of the

request.

CResponse

Properties

Name Type Acc Description
CmdResultCode byte R/W Gets or sets the cmd reponse code.

DeviceStatus byte Gets or sets the Hart device status.

DataLength byte RO Gets the number of bytes of payload data in the response.

Data byte[] Gets an array of bytes with the payload data for the response.

Methods

Declaration Description

void SetByte(byte offset, byte value) Sets the value of an 8 bit unsigned integer at the position (offset) in the data
of the response.

void SetInt16(byte offset, ushort value) Sets the value of a 16 bit unsigned integer at the position (offset) in the data
of the response.

void SetInt24(byte offset, uint value) Sets the value of a 24 bit unsigned integer at the position (offset) in the data

of the response.

void SetInt32(byte offset, uint value) Sets the value of a 32 bit unsigned integer at the position (offset) in the data

of the response.

void SetFloat(byte offset, float value) Sets the value of a 32 bit float at the position (offset) in the data of the

response.

void SetPackedASCII(byte offset,

 string value,

 byte len)

Convert the string (value) into PackedASCII-format and insert the resulting
bytes at the position (offset) in the data of the response. len is the number of

PackedASCII bytes to be inserted. It should be an integer multiple of 3. If this

is not the case it is reduced to the next lower integer multiple of 3.
The length of the string (val) should be an integer multiple of 4 following the

formula:

value.length = len / 3 * 4
if value.length is shorter than the required length the string is filled by ‘ ’. If it

is longer the string is truncated.

Example: The Hart short tag name has to have 8 characters. Therefore len has
to be 6.

void SetString(byte offset,

 string value,

 byte len)

Insert the bytes of a ISO Latin-1 string (val) with the length len at the position
(offset) in the data of the response. If the string is shorter than len it is filled

by char(0). If the string is longer than len it is truncated.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 63

Additional Information

Structures

Type Name Description

T_strConfiguration

unsigned int uiBaudRate Baudrate as defined in winbase.h

CBR_1200

CBR_2400

CBR_4800

CBR_9600
CBR_19200

CBR_38400

CBR_57600
CBR_115200

Default: CBR_1200

unsigned char ucNumPreambles Number of preambles used for a request (0..22)

Default: 5

unsigned char ucNumRetries Number of retries if device response is erroneous (0..3)
Default: 2

unsigned char ucRetryIfBusy 0: Do not retry if device is responding with busy code

1..255: Retry the command if device is responding with
busy code. The number of retries is reflected in the

confirmation as ucUsedRetries.

Default: 1

unsigned char ucInitialMasterRole

0: Primary master

1: Secondary master

Default: 0

unsigned char ucReserved Not used (former addressing mode)

unsigned char ucDoNotUseRtsDtr
0: Use handshake signals

1: Do not use handshake signals
Default: 0

unsigned short usAddTimeOut
Additional time out to wait for a slave response in ms. Typical 100, 200 etc.
Default: 0

unsigned short usAddGapTime
Additional time for gap between characters in ms. Typical 5, 10 etc.

Default: 0

unsigned short usAddRtsOffDelay
Additional delay before Rts is switched off (carrier off) in ms. Typical 1, 2, 5,

10 etc.

Default: 0

unsigned char bSendJabberOctet
0: Normal sending
1: Append ucJabberOctet to each frame

Default: 0

unsigned char ucJabberOctet Value of the jabber octet

unsigned char bGenParityError Generate a parity error on a particular position

unsigned char ucParityErrorPos Number of the byte at which the error should be injected

unsigned char bHartEnabled
0: Hart not running
1: Hart protocol active

unsigned char bRecJabberOctet
0: Ignore jabber octets

1: Report jabber octets to the monitor

T_strRunTimeInfo
unsigned char bActualMaster 0: Primary Master

1: Secondary Master

unsigned char bFifoDetected >0: More than 3 characters are received at once

unsigned char ucBlockSize Number of characters received at once

unsigned char ucReserved

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 64

Type Name Description

T_strConnection
unsigned char ucManId Manufacturer id as defined by the Hart Communication Foundation

unsigned char ucDevId Vendor's device id

unsigned char ucNumPreambs Number of preambles defined by the device

unsigned char ucCmdRevNum Command set revision number as defined by Hart

unsigned char ucSpecRevCode Device specific revision code

unsigned char ucSwRev Software revision code

(0..255)

unsigned char ucHwRev Hardware revision code

unsigned char ucHartFlags The flags as defined by Hart

unsigned char ucError Service completion code

SRV_EMPTY(0) Not active

SRV_NO_DEV_RESP(1) No device response

SRV_COMM_ERR(2) There was some error

(too few data e.g.)

SRV_INVALID_HANDLE(3) Service handle is invalid

SRV_IN_PROGRESS(4) Service working

SRV_SUCCESSFUL(5) Service successfully completed

SRV_RESOURCE_ERROR(6) Out of memory

SRV_TOO_FEW_DATA_BYTES(7) Used for cmd 31

unsigned char ucRespCode1 Response code 1 as defined by the Hart specification

unsigned char ucRespCode2 Response code 2 as defined by the Hart specification

unsigned char ucUsedRetries Number of retries which were used for completion

unsigned char bDeviceInBurstMode 0: Normal mode

1: Device is in burst mode

unsigned char ucExtDevStatus Extended device status

unsigned short usCfgChCount Configuration changed counter

unsigned char ucMinNumPreambs Minimum number of preambles

unsigned char ucMaxNumDVs Maximum number of device variables

unsigned short usManuID Extended manufacturer ID

unsigned short usLabDistID Extended label distributor ID

unsigned char ucDevProfile Device profile

unsigned char ucReserved -/-

unsigned char aucUniqueID[5] Unique identifier

T_strCyclicData
unsigned long ulTimeStamp Time in ms since recording of burst messages was started

unsigned char ucCmd Command of the received frame

unsigned char ucRsp1 Device response code 1

unsigned char ucRsp2 Device response code 2

unsigned char ucDataLen Number of bytes in productive data

unsigned char aucData[255] Productive data of the burst message

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 65

Type Name Description

T_strConfirmation
unsigned char ucCmd Command which was executed

unsigned char ucRespCode1 Response code 1 as defined by the Hart specification

unsigned char ucRespCode2 Response code 2 as defined by the Hart specification

unsigned char ucError Service completion code

 SRV_EMPTY(0) Not active

SRV_NO_DEV_RESP(1) No device response

SRV_COMM_ERR(2) There was some error

(too few data e.g.)

SRV_INVALID_HANDLE(3) Service handle is invalid

SRV_IN_PROGRESS(4) Service working

SRV_SUCCESSFUL(5) Service successfully completed

SRV_RESOURCE_ERROR(6) Out of memory

SRV_TOO_FEW_DATA_BYTES(7) Used for cmd 31

unsigned char ucUsedRetries Number of retries which were used for completion

unsigned char bDeviceInBurstMode 0: Normal mode
1: Device is in burst mode

unsigned short usDuration Time for service execution in ms

unsigned long dwAppKey Is returned by the FetchConfirmation function as it was passed to the
DoCommand function.

unsigned short usExtCmd Extended cmd number

unsigned char ucReserved Reserved for future use

unsigned char ucLen Number of response data bytes (octets)

unsigned char aucData

[DATA_BUF_LEN]
Response data bytes (DATA_BUF_LEN = 255)

T_strSlaveDynamicValues
float fPercent Actual percent of range

float fCurrent Actual current value as ma

unsigned char ucUnitCodePV1 Hart unit code for PV1

unsigned char ucUnitCodePV2 Hart unit code for PV2

unsigned char ucUnitCodePV3 Hart unit code for PV3

unsigned char ucUnitCodePV4 Hart unit code for PV4

float fPV1 Value of PV1

float fPV2 Value of PV2

float fPV3 Value of PV3

float fPV4 Value of PV4

unsigned char bDeviceMalfunction Signals device mal function

unsigned char bCfgChangedPrimMaster Configuration change flag for primary master

unsigned char bCfgChangedScndMaster Configuration change flag for primary master

unsigned char bColdStartPrimMaster Cold start flag for primary master

unsigned char bColdStartScndMaster Cold start flag for secondary master

unsigned char bMoreStatusAvail Flags more status available (see command 48)

unsigned char bLoopCurrentFixed Signals fixed current mode active

unsigned char bLoopCurrentSaturated Signals current output saturated

unsigned char bNonPrimVarOutLimits Signals none primary variable out of limits

unsigned char bPrimVarOutLimits Signals primary variable out of limits

unsigned char bUseExtValues Indication to the slave simulation to use the values of this structure instead of

its own.

unsigned char ucReserved1 Reserved for future use

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 66

Type Name Description

T_strSlaveConfiguration
unsigned char ucManufacturerID Manufacturer’s identifier

unsigned char ucDeviceID Device identifier

unsigned char ucNumPreambles Number of preambles needed in a request (2..20, recommended: 2)

unsigned char ucCmdSetRevision Hart compatibility version
(5..7, recommended: 5)

unsigned char ucTransmSpecRev Transmitter specific revision

unsigned char ucSoftwareRevision Software revision number

unsigned char ucHardwareRevision Hardware revision number

unsigned char ucReserved1 Reserved for future use

unsigned char ucDevNum1 Device number [LSB]

unsigned char ucDevNum2 Device number [LSB+1]

unsigned char ucDevNum3 Device number [LSB+2]

unsigned char ucReserved2 Reserved for future use

unsigned char aucShortTag[12] Tag name, 8 characters (see 3.3.2.1 Packed ASCII Coding for possible
characters)

unsigned char aucLongTag[36] Long tag name, 32 characters iso latin 1

unsigned char ucPollAddress Slave polling address

unsigned char ucNumberOfPVs Defines the number of variables to be sent with command 3

unsigned char ucReserved3 Reserved for future use

unsigned char ucReserved4 Reserved for future use

unsigned char aucMessage[36] Message, 32 characters coded in packed ASCII

unsigned char aucDescription[20] Description, 16 characters coded in packed ASCII

unsigned char ucDay Day of Hart date (1..31)

unsigned char ucMonth Month of Hart date (1..12)

unsigned short usYear Year of Hart date (1900..2155)

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 67

Constants

Name Value Description

Service Completion Codes

SRV_EMPTY 0x00 Service not active

SRV_NO_DEV_RESP 0x01 Device did not respond

SRV_COMM_ERR 0x02 There was a communication error (too few data e.g.)

SRV_INVALID_HANDLE 0x03 Service handle not valid

SRV_IN_PROGRESS 0x04 Service not yet completed

SRV_SUCCESSFUL 0x05 Service successfully completed

SRV_RESOURCE_ERROR 0x06 Out of memory

SRV_TOO_FEW_DATA_BYTES 0x07 Used with cmd 31

Values of Handles

INVALID_DRV_HANDLE -1 Driver handle not valid

INVALID_SRV_HANDLE -1 Service handle not valid

Endian

MSB_FIRST 0x00 Big Endian (Hart standard): Most Significant Byte first

LSB_FIRST 0x01 Little Endian: Least Significant Byte first

Wait Options

DRV_NO_WAIT 0x00 User will poll for the completion of service

DRV_WAIT 0x01 The function returns if service is completed

Slave Modes

SLAVE_DISABLED 0x00 Slave emulation is not active

SLAVE_ENABLED 0x01 Slave emulation is active

Cyclic Data Handling

CYCDAT_OK 0x00 Cyclic data available

CYCDAT_NO_DATA 0x01 Cyclic data not (yet) available

Boolean Values

T_FALSE 0x00 True

T_TRUE 0x01 False

Events

NONE 0x00

CONFIRMATION 0x01

BURST_INDICATION 0x02

REQUEST 0x03

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 68

Hart at a Glance

Frame Coding

Figure 14: The Basic Coding of a Hart Frame

The figure above is giving an overview of the coding of a Hart

frame. Usually Hart services are composed of a request (stx) by

the master followed the response (ack) of a slave. Bursts (back)

are frames looking like a response (including response codes)

but sent by the slave without any request. The slave is sending

these frames in burst mode within defined time slots following

the rules of the protocol specification. In fact Hart is a token

passing protocol which allows also the slave to be a token

holder and send burst frames.

The following chapter is showing a list of Hart commands which

are used very often. The list is showing the major differences

between Hart 5.3, Hart 6 and Hart 7.4.

New items in Hart 6 are marked with yellow color while new

items of Hart 7.4 are marked by blue color.

However, the following is not replacing any specification and is

not showing the details which are needed for an

implementation. The details has to be taken from the Hart

specifications which are provided by the FieldComm Group:

Hart Specifications.

That the listed commands are most commonly used is not the

opinion of the HCF but the opinion of the author of this

document.

DEL ADDRESS ExpBytes CMD CNT DATA CHK

Short Address

6 Bit Polling Address

Field Device in Burst Mode

Master Address

0 Secondary Master

1 Primary Master

The Delimiter leads to the Byte Count

The Byte Count leads to the Check Byte

MAN DEV UNIQUE ID

Long Address

6 Least Significant Bits of Manufacturer ID

Field Device in Burst Mode

Master Address 0 Secondary Master

1 Primary Master

Delimiter

Frame Type

1 BACK (Burst Frame)

2 STX (Master to Field Device)

6 ACK (Field Device to Master)

Physical Layer Type 0 Asynchronous

1 Synchronous

Number of Expansion Bytes

0 Polling (1 Byte) Address

1 Unique (5 Byte) Address
Address Type

Reponse Data Normal: RSP1 RSP2 PAYLOAD

Reponse Data Cmd 31: RSP1 RSP2 PAYLOAD EXTCMD

N Bytes

2 Bytes N Bytes

5 Bytes

N (+2) (+2) Bytes

Data may contain response codes (ack,

back) and/or the extended command (stx,

ack, back).
0-3 Bytes

Note: In this figure the preambles (0xff), which

are sent before the delimiter are not shown

because the preambles are considered to be a

part of the physical layer.

Number payload bytes +

response bytes + extended

command bytes

First Address Byte

Normally not

used.

Device ID

Unique for 6 bit

manufacturer ID and

8 bit device ID.

1 or 5 Bytes

https://www.fieldcommgroup.org/hart-specifications

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 69

Commonly Used Commands

No Title Request Data Response Data

Universal

00 Read Unique
Identifier

None 0 int8 254

1 Manufacturer ID

2 Short device ID

3 Number preambles request

4 Hart revision

5 Device revision

6 Software revision

7 Hw rev and signaling code

8 Flags

9 int24 DevUniqueID

12 int8 Number preambles response

13 Maximum number device variables

14 int16 Configuration change counter

16 int8 Extended device status

17 int16 Extended manufacturer code

19 Extended label distributor code

21 int8 Device profile

01 Read Primary
Variable

None 0 int8 PV Units

1 float Primary variable

02 Read Current and
Percent of Range

None 0 float Current

1 float Percent of range

03 Read Current and
Dyn. Variables

None 0 float Current

4 int8 PV1 units code

5 float PV1 value

9 int8 PV2 units code

10 float PV2 value

14 int8 PV3 units code

15 float PV3 value

19 int8 PV4 units code

20 float PV4 value

06 Write Polling
Address

0 int8 Polling Address 0 int8 PV Units

1 int8 Loop current mode 1 int8 Loop current mode

07 Read Loop
Configuration

None 0 int8 Polling address

1 Loop current mode

08 Read Dyn. Vars
Classification

None 0 int8 PV1 classification

1 PV2 classification

2 PV3 classification

3 PV4 classification

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 70

No Title Request Data Response Data

Universal

09 Read Device
Variables with

Status

0 int8 Slot0: Device variable code 0 int8 Extended device status

1 Slot1: Device variable code 1 Slot0: Device variable properties

2 Slot2: Device variable code 1 int8 Device variable code

3 Slot3: Device variable code 2 Device variable classification

4 int8 Slot4: Device variable code 3 Device variable units code

5 Slot5: Device variable code 4 float Device variable value

6 Slot6: Device variable code 8 int8 Device variable status

7 Slot7: Device variable code 9 struct Slot1: Device variable properties

 17 Slot2: Device variable properties

25 Slot3: Device variable properties

33 struct Slot4: Device variable properties

41 Slot5: Device variable properties

49 Slot6: Device variable properties

57 Slot7: Device variable properties

65 time Time stamp slot0

11 Read Unique ID
by Short Tag

0 pac6 Tag name (packed ascii)
6 bytes = 8 characters

Same as command 0 read unique identifier

12 Read Message None 0 pac24 Message (packed ascii)

24 bytes = 32 characters

13 Read Tag,
Descriptor,

Date

None 0 pac6 Short tag (packed ascii)
6 bytes = 8 characters

6 pac12 Descriptor (packed ascii)
12 bytes = 16 characters

18 int8 Day

19 Month

20 Year (offset to 1900)

14 Read Primary
Variable

Transducer

Information

None 0 int24 Transducer serial number

3 int8 Units code

4 float Upper transducer limit

8 Lower transducer limit

12 Minimum span

15 Read Device
Information

None 0 int8 Alarm selection code

1 Transfer function code

2 Units code

3 float PV upper range value (for 20 mA)

7 PV lower range value (for 4 mA)

11 PV damping value

15 int8 Write protect code

16 Reserved, must be set to 250

17 PV analog channel flags

16 Read Ass. Num None 0 int24 Final assembly number

17 Write Message Same as response command 12 Same as response command 12

18 Write Tag,
Descriptor,

Date

Same as response command 13 Same as response command 13

19 Write Ass. Num Same as response command 16 Same as response command 16

20 Read Long Tag None 0 str32 Long tag: 32 ISO Latin-1 characters

21 Read Unique ID
by Long Tag

0 str32 Long tag: 32 ISO Latin-1 characters Same as command 0 read unique identifier

22 Write Long Tag Same as response command 20 Same as response command 20

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 71

No Title Request Data Response Data

Universal / Common Practice

38 Reset Config
Changed Flag

None None

0 int16 Configuration change counter 0 int16 Configuration change counter

48 Read Additional
Device Status

None

0 int8[5] Transmitter specific status 0 int8[5] Transmitter specific status

 6 int8[2] Operating mode

6 int8 Extended device status 6 int8 Extended device status

7 Device operating mode 7 Device operating mode

 8 int8[3] Analog output status

8 int8 Standard status 0 8 int8 Standard status 0

9 Standard status 1 9 Standard status 1

10 Analog channel saturated 10 Analog channel saturated

 11 int8[3] Analog output fixed

11 int8 Standard status 2 11 int8 Standard status 2

12 Standard status 3 12 Standard status 3

13 Analog channel fixed 13 Analog channel fixed

 14 int8[3] Transmitter specific status

14 int8[10] Transmitter specific status 14 int8[10] Transmitter specific status

Common Practice

33 Read Device
Variables

0 int8 Slot0: Device variable code 0 Slot0: Device variable properties

1 Slot1: Device variable code 0 int8 Device variable code

2 Slot2: Device variable code 1 Device variable units code

3 Slot3: Device variable code 2 float Device variable value

 6 struct Slot1: Device variable properties

12 Slot2: Device variable properties

18 Slot3: Device variable properties

34 Write Prim. Var.
Damping

0 float PV 1 damping value 0 float PV 1 damping value

35 Write Prim. Var.
Range Values

0 int8 Units code 0 int8 Units code

1 float Upper range value 1 float Upper range value

5 Lower range value 5 Lower range value

36 Set Prim. Var.
Upper Range

None None

37 Set Prim. Var.
Lower Range

None None

40 Enter/Exit
Fixed Current

0 float Current value 0 float Actual current value

42 Device Reset None None

43 Set Primary
Variable Zero

None None

44 Write Prim. Var.
Units

0 int8 PV 1 units code 0 int8 PV 1 units code

45 Trim Prim. Var.
Current Zero

0 float Measured current value 0 float Actual current value

46 Trim Prim. Var.
Current Gain

0 float Measured current value 0 float Actual current value

50 Read Dynamic
Variable

Assignments

None 0 int8 PV 1 variable code

1 PV 2 variable code

2 PV 3 variable code

3 PV 4 variable code

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 72

No Title Request Data Response Data

Common Practice

51 Write Dynamic
Variable

Assignments

0 int8 PV 1 variable code 0 int8 PV 1 variable code

1 PV 2 variable code 1 PV 2 variable code

2 PV 3 variable code 2 PV 3 variable code

3 PV 4 variable code 3 PV 4 variable code

54 Read Device
Variable

Information

0 int8 Device variable code 0 int8 Device variable code

 1 int24 Sensor serial number

4 int8 Units code

5 float Variable upper limit

9 Variable lower limit

13 Variable damping

17 Variable minimum span

21 int8 Variable classification

22 Variable family

23 time Acquisition period

27 bin8 Variable properties

71 Lock Device 0 int8 Lock code 0 int8 Lock code

76 Read Lock State None 0 int8 Lock status

78 Read Aggregated
Commands

0 int8 Number of commands requested 0 int8 Extended device status

1 str[] Array of command requests

struct {

int16 command
int8 byteCount

int8[] requestData }

1 int8 Number of commands requested

 2 str[] Array of command responses

struct {
int16 command

int8 byteCount

int8 responseCode
int8[] responseData }

792 Write Device
Variable

0 int8 Device Variable Code 0 int8 Device Variable Code

1 DV command code 1 DV command code

2 DV units code 2 DV units code

3 float DV value 3 float DV value

7 int8 DV status 7 int8 DV status

103 Write Burst
Period

0 int8 Burst message 0 int8 Burst message

1 time Update period 1 time Update period

5 Maximum update period 5 Maximum update period

104 Write Burst
Trigger

0 int8 Burst message 0 int8 Burst message

1 Trigger mode selection code 1 Trigger mode selection code

2 Device variable classification for

trigger level

2 Device variable classification for trigger

level

3 Units code 3 Units code

4 float Trigger level 4 float Trigger level

2 Used to simulate the value of a device variable

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 73

No Title Request Data Response Data

Common Practice

105 Read Burst Mode
Configuration

None 0 int8 Burst mode control code

1 int8 Burst command number

2 int8 Burst command slot 0

3 int8 Burst command slot 1

4 int8 Burst command slot 2

5 int8 Burst command slot 3

0 int8 Burst message 0 int8 Burst mode control code

 1 0x1f (31) command expansion

2 DV code slot0

3 DV code slot1

4 DV code slot2

5 DV code slot3

6 DV code slot4

7 DV code slot5

8 DV code slot6

9 DV code slot7

10 Burst message

11 Maximum number of burst messages

12 int16 Extended command number

14 time Update time

18 Maximum update time

22 int8 Burst trigger mode code

23 DV classification for trigger value

24 Units code

25 float trigger value

106 Flush Delayed
Responses

None None

107 Write Burst
Device Variables

0 int8 DV code slot 0 0 int8 DV code slot 0

1 DV code slot 1 1 DV code slot 1

2 DV code slot 2 2 DV code slot 2

3 DV code slot 3 3 DV code slot 3

4 int8 DV code slot 4 4 int8 DV code slot 4

5 DV code slot 5 5 DV code slot 5

6 DV code slot 6 6 DV code slot 6

7 DV code slot 7 7 DV code slot 7

8 Burst message 8 Burst message

108 Write Burst Mode
Command

0 int8 Command number for the burst

response

0 int8 Command number of the burst

response

109 Burst Mode
Control

0 int8 Burst mode control code 0 int8 Burst mode control code

113 Catch Device
Variable

0 int8 Destination DV code 0 int8 Destination DV code

1 Capture mode code 1 Capture mode code

2 Source slave manufacturer ID 2 int8[5] Source slave address

3 Source slave device type

2 int16 Source slave expanded device type

4 int8[3] Source slave device ID

7 int8 Source command number 7 int8 Source command number

8 Source slot number 8 Source slot number

9 float Shed time for this mapping 9 float Shed time for this mapping

7 int8 0x1f (31) command expansion 7 int8 0x1f (31) command expansion

8 Source slot number 8 Source slot number

9 float Shed time for this mapping 9 float Shed time for this mapping

13 int16 Ext source command number 13 int16 Ext source command number

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 74

No Title Request Data Response Data

Common Practice

114 Read Caught
Device Variable

0 int8 Destination DV code 0 int8 Destination DV code

 1 Capture mode code

2 int8[5] Source slave address

7 int8 Source command number

8 Source slot number

9 float Shed time for this mapping

7 int8 0x1f (31) command expansion

8 Source slot number

9 float Shed time for this mapping

13 int16 Ext source command number

523 Read Condensed
Status Mapping

Array

0 int8 Starting index status map 0 int8 Actual starting index

1 Number of entries to read 1 Number of entries returned

 2 int4[] Status map codes array

524 Write Condensed
Status Mapping

Array

0 int8 Starting index status map 0 int8 Actual starting index

1 Number of entries to write 1 Number of entries returned

2 int4[] Status map codes array 2 int4[] Status map codes array

525 Reset Condensed
Status Map

None None

526 Write Status
Simulation Mode

0 int8 Status simulation mode 0 int8 Status simulation mode

527 Simulate Status
Bit

0 int8 Status bit index 0 int8 Status bit index

1 Status bit value 1 Status bit value

Response Codes

As response code 1 is command specific it is documented

together with the command specifications. However response

code 2 is of general nature and contains 8 bit flags with the

following meaning.

Flag Number / Meaning Description

Bit #7 Field Device Malfunction The device has detected a hardware error or failure. Further information may be available

through the Read Additional Transmitter Status Command, #48.

Bit #6 Configuration Changed A write or set command has been executed.

Bit #5 Cold Start Power has been removed and reapplied resulting in the reinstallations of the setup

information. The first command to recognize this condition will automatically reset this

flag. This flag may also be set following a Master Reset or a Self Test.

Bit #4 More Status Available More status information is available than can be returned in the Field Device Status.

Command #48, Read Additional Status Information, will provide this additional status

information.

Bit #3 Primary Variable Analog

Output Fixed

The analog and digital analog outputs for the Primary Variable are held at the requested

value. They will not respond to the applied process.

Bit #2 Primary Variable Analog

Output Saturated

The analog and digital analog outputs for the Primary Variable are beyond their limits and

no longer represent the true applied process.

Bit #1 Non Primary Variable Out of

Limits

The process applied to a sensor, other than that of the Primary Variable, is beyond the

operating limits of the device. The Read Additional Transmitter Status Command, #48,

may be required to identify the variable.

Bit #0 Primary Variable Out of

Limits

The process applied to the sensor for the Primary Variable is beyond the operating limits

of the device.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 75

Data Types

Float IEEE 754

The following summarizes the IEEE 754 and recommends that

standards are referred to for implementation.

The floating point values passed by the protocol are based on

the IEEE 754 single precision floating point standard.

Data Byte #0 #1 #2 #3

 SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

S - Sign of the mantissa; 1 = negative

E - Exponent; Biased by 127 decimal in two's complement format

M - Mantissa; 23 least significant bits, fractional portion

The value of the floating point number described above is

obtained by multiplying 2, raised to the power of the unbiased

exponent, by the 24-bit mantissa. The 24-bit mantissa is

composed of an assumed most significant bit of 1, a decimal

point following the 1, and the 23 bits of the mantissa.

()1272.1 − EMS

The floating point parameters not used by a device will be filled

with 7F A0 00 00: Not-a-Number.

Double IEEE 754

The following summarizes the IEEE 754 and recommends that

standards are referred to for implementation.

The floating point values passed by the protocol are based on

the IEEE 754 single precision floating point standard.

Data Byte #0 #1 #2 #3

 SEEEEEEE EEEEMMMM MMMMMMMM MMMMMMMM

Data Byte #4 #5 #6 #7

 MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM

S - Sign of the mantissa; 1 = negative

E - Exponent; Biased by 1023 decimal in two's complement

format

M - Mantissa; 52 least significant bits, fractional portion

The value of the floating point number described above is

obtained by multiplying 2, raised to the power of the unbiased

exponent, by the 53-bit mantissa. The 53-bit mantissa is

composed of an assumed most significant bit of 1, a decimal

point following the 1, and the 52 bits of the mantissa.

()10232.1 − EMS

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Additional Information 76

Packed ASCII

The packed ASCII Format uses 6 Bit to encode a character.

Therefore 4 characters in the original string require 3 octets in

the resulting data. It is recommended to provide strings always

as a multiple ordinal of 4 characters

Construction of Packed-ASCII characters:

a) Truncate Bit #6 and #7 of each ASCII character.

b) Pack four, 6 bit-ASCII characters into three bytes.

Reconstruction of ASCII characters:

a) Unpack the four, 6-bit ASCII characters.

b) Place the complement of Bit #5 of each unpacked, 6-bit

ASCII character into Bit #6.

c) Set Bit #7 of each of the unpacked ASCII characters to

zero.

d) The Packed ASCII code (hexadecimal) allows the

representation of the following characters.

CHAR CODE CHAR CODE CHAR CODE CHAR CODE

@ 00 P 10 Space 20 0 30

A 01 Q 11 ! 21 1 31

B 02 R 12 " 22 2 32

C 03 S 13 # 23 3 33

D 04 T 14 $ 24 4 34

E 05 U 15 % 25 5 35

F 06 V 16 & 26 6 36

G 07 W 17 ' 27 7 37

H 08 X 18 (28 8 38

I 09 Y 19) 29 9 39

J 0A Z 1A * 2A : 3A

K 0B [1B + 2B ; 3B

L 0C \ 1C , 2C < 3C

M 0D] 1D - 2D = 3D

N 0E ^ 1E . 2E > 3E

O 0F _ 1F / 2F ? 3F

e) Note: The implementation of the function is assuming

that the packed ascii string should be an ordinal multiple

of 3. If the length of the passed string is not an ordinal

multiple of 4 the missing packed ascii characters are

replaced by spaces.

 HartTools 7.6

HartTools 7.6.0 / 15.8.2023 Appendix 77

 Appendix

Abbreviations

Abbreviation Description

HCF Hart Communication Foundation

DLL Windows: Dynamic Link Library
OSI-ISO: Data Link Layer

HAL Hardware Abstraction Layer

HART Highway Addressable Remote Transducer
See also:

http://en.wikipedia.org/wiki/Highway_Addressable_Remote_Transducer_Protocol

HMI Human Machine Interface

ISO International Standards Organisation

MODEM MOdulator DEModulator

NV-memory Non-Volatile memory

OSAL Operating System Abstraction Layer

OSI Open Systems Interconnection

UART Universal Asynchronous Receiver Transmitter

	Overview
	Installation
	Application Examples
	Directory Structure

	Getting Started
	Debugging Example Projects
	Slave Simulation with FrameAlyst
	Slave Simulation with Test Client
	HartDLL (Client + OSAL)
	Service Processing Flow Diagram
	Principle of Operation
	Excel
	Modules

	HartX (Client)
	Service Processing Flow Diagram
	Principle of Operation
	Visual Studio
	Excel

	SlaveDLL (Server + OSAL)
	SlaveX (Server)
	Test Client
	Slave Simulation
	Using FrameAlyst as Debugging Master

	User Slave DLL in FrameAlyst

	Python Example
	Visual Studio Code Example

	Detailed Descriptions
	FrameAlyst
	Features
	Functions and Menus
	Common Elements
	Display Items (Frames)
	File Menu
	Home Menu
	Hart Commands Menu
	Trigger/Filter Menu
	Slave Menu
	Options Menu
	Test/Diagnostic Menu

	Additional Features
	Store in Xml and Html Format
	Xml Format Example
	Html Output Example

	Services Menu
	Toggle Burst Mode
	Set Poll Address
	Search Device
	Edit/Set Long Tag
	Activate Hart 6/7
	Handle Device Data
	Set Tag, Descriptor and Date
	Set Range
	Edit and Run Scripts

	Decoding Data in a Frame
	Copy to SendAnyFrame
	Copy Bytes to the Clipboard
	Editing Data Syntax
	Displaying the Slave Emulation
	Handling of Erroneous Frames
	Setting Custom Colors
	Frame Display Examples

	HartDLL (Client + OSAL)
	Distribution of Applications
	Functions

	HartX (Client)
	Distribution of Applications
	CHartX
	Properties
	Methods
	Events

	SlaveDLL (Server + OSAL)
	Functions

	SlaveX (Server)
	CSlaveX
	Properties
	Methods

	CRequest
	Properties
	Methods

	CResponse
	Properties
	Methods

	Additional Information
	Structures
	Constants
	Hart at a Glance
	Frame Coding
	Commonly Used Commands
	Response Codes

	Data Types
	Float IEEE 754
	Double IEEE 754

	Packed ASCII

	Appendix
	Abbreviations

