HartTools

Software Documentation

7.6.0
15.8.2023

ANA N
TAVARVAIAY.

Real Time
WINAPI

Revision:
Date:

Software Solutions for

Hart Instruments Developers

Ay

Hart 5-7

Windows 11 VS 2019
Visual Basic Python Excel

o

VS Code

Standard C++

Borst Automation
Kapitaen-Alexander-Strasse 39
27472 Cuxhaven

GERMANY

Fon: +49 (0)4721 6985100
Fax: +49 (0)6432 6985102

https://www.borst-automation.de

info@borst-automation.de

Borst

Embedded Solutions

Copyright® 1998-2023 Borst Automation, Walter Borst, Cuxhaven, GERMANY

Windows® is a registered trademark of Microsoft Corporation



Automation
or’ Embedded Solutions HartTools 7.6
Contents
overview.llllllllllllllllllllllllllllllllllllllllllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIII2
Installation ..cciieiiiii i i rr s r e e e e e e r s nr s nranrnnrnnn 3
Application Examples....ccccvicmicmnmnemiemsssmsesmsesssasssasssasssasssasssanssansns 4
Directory Structure .....ccveciiemiiritre i srssrs s ssasssasssanssanssanssnnsnnnnss 5

Getting Started ........cciiiicciiis s s s e s O

Debugging Example Projects .....cccuveiimiicmimisnssnassnassrnssnassnansnannns 6
Slave Simulation with FrameAlyst.......cccccvicimicimncimncsnsssnsessssssnsannnes 6
Slave Simulation with Test Client.....ccccvicimicmncimnemsesmsesmsesssesssasssannnes 7
HartDLL (Client + OSAL) ccuicuverrammammammsnssassassassassassassassassassansansansansanss 8
o= 12
1= T o G (] 1= £ T ) e 13
RV A8 E= Y S 6 Lo [ o PP 16
(o= 18
SlaveDLL (Server + OSAL) ..ccuverieriermammammamsamsanssnsanssnsanssnssnssnsnnssnnsnns 22
SlaveX (SErVEer) .iicciretreetrantrantrantrassrassrasssasssasssssssanssanssanssnnssnnsnnnnss 24
LTS A 1 =T o 24
Slave SimUIatioN .. v 24

User Slave DLL in FrameAlySt ..o 26
Python EXample ....ccuvciierieriemmmmmmnsansamssmssn s s ssnssnssnssnssnsnnssnnnnnnnnsas 27
Visual Studio Code EXample....ccvicrierierierieriermermessassessassassansansansansans 28
Detailed DescCriptioNS ....cciviticmrimmss s ssssesssansssansssnnsssnnssannss 32
FrameAlyst......cciciiiiiiii i i rr s s s s s sne s snm s s nm s nnnnanns 32
FUNCLIONS @Nd MENUS ..ottt aae e 33
Additional FEAtUIES ..uivviriiiii i aeans 38
HartDLL (Client + OSAL) ..cccuieiiemiammmmmsmsnnssnssassassnssassnssassnssnnsnnnansns 47
U] o Vot o o] o F= 48

[ 1= T o G (] 1= 5 T ) 53
1 1= o o P 54
SlaveDLL (Server + OSAL) .iicivrverremramrasmassanssnssnssassassassassansansansnnsans 58
U o o o) 1 58
SlaveX (SEIrVEr) .ciiciirierierieriersarsessassansassassansanssnssnssnsanssnssnssnnsansnnsans 61
LG = 177 61
CREQUESTE .ttt 61

(O 2T 010 ] 11T PP 62
Additional Information......cccuvieiiinsssnrss s srrrs s srrrs s s 63
StrUCTUIES . iiiciiiierinenssneassssn s ssssnnsssansssannsssannsasannsannnnssnnnnssnnnnnsnnnnns 63
(00 1 1= - 1 3 e 67
Hart at @ Glance ....iciviiiirirerr s s s s s sr s s s nannns 68
DAt TYPES uuuruumriunriunrunrmansmn s s smanssansaansaansaansaansannsannnsnnnannnnnnnsnns 75
(o= Lol N Y PP 75
PaCKed AS Il .ttt 76

ApPPendiX..iiccrieasssanssssssannssansssnnsssnnssannssansssnnsssnnssannssansssnnsnnnnnnn 7
Abbreviations......cciieeiirssrsnne s ssssssnss s sassanns s sansaann s sanaaannnnnnnannnnns 77

HartTools 7.6.0 / 15.8.2023 Contents 1



Bo s t g"‘gs‘g‘ﬂgs'!g'g HartTools 7.6

Overview

HartTools is a set of components used to provide applications
based on Hart communication on a Windows computer.

C#, C++ and VB Application
Source Code Examples FrameAIySt
Examples

Generic Load Interface
for FrameAlyst and the
slave test client.

\\\\\j | .NET Component

Standard Hart Device The Hart device
Simulation simulation is also

BaSlvStdDevSim.dll <<:%iWMbNeMSmHmCO%

as a user example.

User User
| |
Hart Slave Hart Master ﬁ .NET Components
BaSlaveX76.dl1l BaHartX76.d1l1
User User
| | Native DLLs
Hart Slave Hart Master
BaSlaveDrv76.dl1l BaHartDrv76.d1l1l
Com Ports Com Ports

Figure 1: Components Architecture of Hart Tools 7.6

The Hart Tools are based on two native Windows DLLs. One for
the master functionality and the other one for the slave
services. For both a .NET component is provided.

The user may integrate the native DLLs or the .NET components
into his application.

FrameAlyst is a standard application for monitoring and
analyzing the communication streams. FrameAlyst is docking at
the Hart Master DLL (BaHartDrv76.dll).

HartTools 7.6.0 / 15.8.2023 Overview 2



Bo "t Embedded Solutions

HartTools 7.6

Because native DLLs can only be provided as 32 or 64 bit
assemblies, both versions are available in the packet.

.NET DLLs are avaible for three architectures.

Component Path CPU |Description

BaHartDrv76.d1l1 .\UserDLLs\System\x86\ x86 The Hart master DLL is also providing a monitor
WindowsSystem (32 bit) interfaces for FrameAlyst and for the user.
.\UserDLLs\System\x64\ X64
WindowsSystem (64 bit)

BaHartS1lv76.d11 .\UserDLLs\System\x86\ x86 The Hart slave DLL is providing function s which
WindowsSystem (32 bit) are needed by a Hart command interpreter.
.\UserDLLs\System\x64\ X64
WindowsSystem (64 bit)

BaHartX76.d11l .\UserDLLs\App\ Any The .NET Hart master component is an additional
.\Debug\ x64 shell to the master DLL.
.\Debug (x64) \ X86
.\Debug (86) \

BaSlaveX76.d1l1l -\UserDLLs\App\ The .NET Hart slave component is an additional
- \Debug\ shell to the slave DLL.
.\Debug (x64) \
.\Debug (86)

BaSlvStdDevSim.dll -\ The standard Hart device simulation serves to
.\UserDLLs\App\ purposes. One is to provide a slave simulation to
. \Debug\ FrameAlyst and to provide an example of a slave
- \Debug (x64) \ device simulation for the user.
.\Debug (86)

BaHartFrameAlyst76.exe A\ The FrameAlyst is the main application of the Hart
.\UserDLLs\App\ Tools package.
.\Debug\
. \Debug (86) x86 A 32 bit compilation of the application is provided

to allow 32 bit debugging on a 64 bit machine.

Table 1: Components and Paths

Installation

The installation may be done into any directory. The solutions
for the example applications are available at the path
A\Examples\.

Note: The projects of the examples were generated with Visual
Studio 2019. Trying the examples with an earlier Version of
Visual Studio will not work.

On 64 bit platforms the installation provides the subdirectory
.\Debug(x86) for debugging 32 bit applications on a 64 bit
platform.

On 32 bit platforms the path .\Debug(x86) is not available
because all applications and components which are compiled for
Any CPU are automatically loaded as 32 bit modules.

HartTools 7.6.0 / 15.8.2023

Overview 3



Bo "t Embedded Solutions

HartTools 7.6

Application Examples

Example

‘Subject

‘Description

HartDLL

C#

AppDeviceData.sln

Device Data Manager

This is a more complex example implementing the handling of
data of various kinds.

ConnectAndRead.sln

Connection, Device Info

The Example demonstrates the usage of the connection
information and the BHDrv_IsServiceCompleted method.

CsGetCyclicData.sln

Cyclic Data Callback

The example is showing how cyclic data is collected from the
HartDLL (burst mode handling). The polling and the callback
mechanisms are demonstrated.

GetUnIDbyTag.sln

Data Link Service

The example demonstrates the usage of the function
BHDrv_ConnectByTagName of the HartDLL.

MultiThreadingDLL.sln

More than one Thread

The example demonstrates how to use several threads for Hart
communication with the HartDLL. Two worker threads are used.

CsRdWrRangeAndTag.sln

Read and Write Data

In Hart commands usually more than one parameter is
communicated. Here the handling is demonstrated.

SendExtCommand.sln

Hart 7, Service Callback

Sends a 16 bit command and demonstrates the use of the service
callback for service completion.

C/C++

UsingBaHartDrv.sln

‘BaHartDrv?G.h

‘A little console application interfacing to the DLL.

Microsoft Office

UsingHartDLL.xlsm

‘VBA Macros

‘Excel can be used to communicate through a Hart Network.

Visual Basic

VbRdWrRangeAndTag.sln

VB Language

The example is showing the use of HartDLL is used in Visual
Basic.

Python

HartDLL-Example.py

Python

The example is showing the use of HartDLL with the Python
interpreter

Visual Studio Code

Workspace file

|BaHartDrv76.h

A little console application interfacing to the DLL.

HartX

C#

CsUsingHartX.sln

.NET Objects

Demonstrates how to use Hart as a .NET object.

MultiThreadingX.sln

More than one Thread

Demonstrates how several instances of HartX are handled.

Microsoft Office

ReadPVs.xlsm

Collecting Data

The example reads the dynamic values from a Hart slave.

Visual Basic

VbUsingHartX.sln

Using .NET in VB

The example how the HartX is integrated into a VB application.
Com port must be set in the source code of frmMain.vb.

SlaveX

UserDevSimSlave.sln

Salve Device Simulation

It is much easier to develop the logic of a device ina PC
simulation using Visual Studio.

The solution is containing two projects. One for a user slave
simulation and another one for a simple test client.

Table 2: Examples for the HartDLL, SlaveDLL, HartX and SlaveX

HartTools 7.6.0 / 15.8.2023

Overview



BO"I Embedded Solutions HartTools 7.6

Directory Structure

After installation the following directory structure is created.

|User’ s Path |

FrameAlyst and required

\—|Hart Tools 7.6 |<I components.

_|Commonc# | Interfaces to the DLLs (and objects)

c Vb
_I oron | Testbench for all components built for
__Ipebug | any cpu.

Debug (x64)
_I = v | Testbench for all components built for
—{Debug (x86) | x64, required for Office64.
_IDocumentation |
_|Ex'amp1es | Testbench for 32 bit components on a

64 bit machine.
—|Common

LI,

—|HartDLL —|AppDeviceData |
_| c# —I ConnectAndRead |
T f i
— GetCyclicData |
—| CH+ —| GetUniqueIDbyTag |
H UsingBaHartDrvCpp | —|Multithrea e |
—|Exce1 |
—| RdWrRangeAndTag |
H UsingHartDLL.xlsm | —I SendExtCommand |
—| Python |
HartDLL-Example.py | |:| Test Paths
—|Visual Basic |
HRdWrRangeMdTag | |:| Example Applications

—|VSCode |

HUsingBaHartDerSCode |

—IHartX | }J:}MultiThreading |

—| C# UsingHartX |
Excel I—I ReadPVs.xlsm |
—|Visual Basic |—|VbUsingHartX |

—{SlaveDLL |
‘—{ C# |—| UsingSlaveDLL |

—|Slavex |
UserDevSimClient |
UserDevSimSlave | .
Native DLLs for the system
LJuserpLLs | /I paths.

System
.NET components for the user

RPP |§I application.

Figure 2: Directory Structure after Setup

HartTools 7.6.0 / 15.8.2023 Overview 5



BO"‘ Embedded Solutions HartTools 7.6

Getting Started

Debugging Example Projects

Hart Tools 7.6
CommonC
CommonC#
CommonVhb
Debug
Debug(xBE)

The main directory, were the Hart Tools 7.6 had been installed
to, contains only the FrameAlyst and three examples which had
been built for any CPU.

There are two directories for trying the examples using Visual
Studio. Debug is used for modules which are built for any CPU
and Debug(x86) is used for 32 Bit outputs.

CommonC, CommonC# and CommonVb are containing modules
of common use such as header files, C# sources and Vb sources
for interfaces and objects.

Bremples 01-Main
Commen 02-Modules
HartDLL 03-HartDrvIntf

= obj
AppDeviceData Properties
Connecté4ndRead i app.config

it BaHartDLL.ico
@ ConnectAndRead.csproj
M8 Connect&ndRead.sin

GetCyclicData
GetUnIDbyTag

There are various examples available for different languages
and platforms. They are mostly developed with Visual Studio
2019.

The solution and the project for an example are located in the
directory which is named as the example solutions.

Note that most of the examples are delivering an 64 Bit output
(any cpu) and a 32 bit output as well. The results are exported
to the paths Debug and Debug(x86).

Slave Simulation with FrameAlyst

In Hart Tools 7.6 the slave simulation is working completely
separated from the Hart Master DLL, which is also used by
FrameAlyst. The slave simulation is written in C# and using the
component SlaveX.

However the slave simulation is realized as a .NET component
and requires a host system to load and run the component. At
present the FrameAlyst is the only host who is loading the slave
.NET assembly.

Instead of using physical com ports you may also use a pair of
virtual com ports such as provided by Serial Port Kit or similar
software solutions.

HartTools 7.6.0 / 15.8.2023

Getting Started 6



Embedded Solutions

Borst

HartTools 7.6

[Home | Commands | Trogerfiter | S Select the com port used by the master in the Home-Tab of

ien C FrameAlyst.
ord Com Port: CoM2 @
Poll Address:  A_00 -
Baudrate: |12I}D vl
palietany Be sure that master and slave are activated.
Preambles: |5 -
Link Role: IPrimary -
¥ Master W Slave
Fie | Home | Commands | Trggerfiter | Sevess |[5eve | The slave assembly of the slave simulation has to be loaded
—Simulation DLL —— ~Setiings (BaHartStdDevSimulation.dll) and the com port of the slave has
ComPott coMs - WD [22 t e set in the Slave-Tab
W User DLL Poll Address: [A00  v|  DeviD: 253
BaHatStdDevSmua || Preambles: [5 -] ueot i
Fle | Home |[Comans | Taceiter  After these settings the Commands-Tab of FrameAlyst
Repeat sendCommand ——  c@n be used to test the functionality of the slave
. simulation

Slave Simulation with Test Client

v || Examples A Name The directory Examples is containing a solution with
> |y Common UserDevSimClient two projects. One project is a custom build Hart slave
» HartDLL UserDevSimSlave written in C#.

> HartMUnitx &8 UserDevSimSlavesin

The other project is a test client to load and run the

y Hartx 3 UserDevSimSlavenv12.suo

R slave simulation DLL.
» UserDeviimClient
> UserDevsimSlave

The implementation is supporting all universal commands and
the common practice commands 34, 35, 38, 48 and 512.

The slave is simulating the 4 PVs and is calculating the current
and the percentage values from the range.

The debug session is started by executing the test client.

s

Hart Device Simulation Test Client

Com Port:  |COM1 w

DLL Name: |UserDe\rSimSIa\re.dII |

Slave Simulation:
Enabled

[ Load |
@

DLL Status: |Sim|.||ation active ... |

User Slave Measurement
Flow: 10,86 1/min
Pressure: 1663,96 mBar
Lewvel: 29,71 mm
Tenperature: 16,31 °C

oo
[ili]

1/min
1/min

Lower Bange:
Upper Range:

10,
20,

&
mi

Range :
Current:

8,57
5

5,37

User Slave Comm

Manufacturer ID:
Device ID:

Poll Address:
Tag Name:

Long Tag Name:

Settingsa
038
114

oo
MY
'Long alave tag name'

TRAG'

HartTools 7.6.0 / 15.8.2023

Getting Started




Borstiuionation
HartDLL (Client + OSAL)

Service Processing Flow Diagram

HartTools 7.6

v

BHDrv_OpenChannel Register at a com port

A
BHDrv_ConnectByAddr Get the unique identifier of the device

\ 4
BHDrv_DoCommand L

Send next command

Y
BHDrv_IsServiceCompleted

A

Poll for service completion

A 4

BHDrv_FetchConfirmation Get the resulting data

A
BHDrv_CloseChannel

v

Figure 3: Polling for Service Completion

HartTools 7.6.0 / 15.8.2023 Getting Started 8



BO"t Embedded Solutions HartTools 7.6

Because command 0 is the only command in Hart which is working with the short address
(0..15/0..63) the unique identifier has to be fetched from the device to use it for the other
commands. The unique identifier can be read by the commands 0, 11 and 21.

There are three ways to wait for the completion of a service. Picture 1 is showing the no wait
mode. In the no wait mode the client program has to poll the DLL by calling
BHDrv_IsServiceCompleted.

l

BHDrv_OpenChannel Register at a com port

|

BHDrv_ConnectByAddr Get the unique identifier of the device

\ 4 Send next command
BHDrv_DoCommand <

A 4
BHDrv_FetchConfirmation Get the resulting data

A
BHDrv_CloseChannel

v

Figure 4: Using the Wait Mode of the DLL

When a service is processed using the function
BHDrv_DoCommand with the option flag DRV_WAIT the
program is returning when the service is totally completed even
if there are errors or if the device is not responding.

Waiting for a service results in a small delay of approximately
250 ms.

Note: If a device is not responding, the function delay for a
multiple of the number of retries which had been configured by
the function BHDrv_SetConfiguration.

HartTools 7.6.0 / 15.8.2023 Getting Started 9



Bo "t Embedded Solutions

HartTools 7.6

The third method is to register a callback function from the
application software. In this case the DLL will call back as soon
as any service of that application is completed.

BHDrv_OpenChannel Register at a com port

BHDrv_RegisterEventCaIIback Register a callback function

BHDrv_ConnectByAddr Get the unique identifier of the device

»| UserServiceCallback (BeginInvoke)

UserServiceCallback (Invoked)

Y
BHDrv_FetchConnection Get the unique ID

A
BHDrv_DoCommand >

»| UserServiceCallback (BeginInvoke)

UserServiceCallback (Invoked)

\ 4 |
BHDrv_FetchConfirmation Get the resulting data

Send next command

BHDrv_CloseChannel Close the channel at the end of the session

Figure 5: Using the a Callback Function for the DLL

The time between the call of the callback function and the
execution of the invoked function is not determined because it is
given by the Windows messaging system. But usually this time

is short if the application is not busy in another event
procedure.

HartTools 7.6.0 / 15.8.2023 Getting Started 10



BO"t Embedded Solutions HartTools 7.6

Principle of Operation

User Application

BaHartDrv76.d1l1l

[ A l
DLL Interface Functions Start Service

) 4

Service Handler < Yes Done?
el — Hart Prot | Thread No
functionality art Frotoco rea Sleep 10 ms
\ [
PC Com Port

HART MODEM

Figure 6: The Internal Structure of the DLL

The figure above shows that the DLL is using is using its own
thread for the real time application. Thus the calling thread may
be of any kind. Even if the DLL is waiting for the completion of
the service it is taking the calling thread into sleep mode.

User Application

Thread 1 Thread 2 Thread 3
BaHartDrv76.dll(1) BaHartDrv76.dll(3)

BaHartDrv76.dIl(2)

Figure 7: The DLL can be used by different Threads

The DLL may be called from several threads. The functions and
communication services are thread safe. Each thread should
register explicitly to get its own handle.

HartTools 7.6.0 / 15.8.2023 Getting Started 11



Bo s t g"‘gs‘g‘ﬂgs'!g'g HartTools 7.6

Excel
A B C D E F G a
1 |Da Manth Year ComPort
2 Test Y 124
3 |Old
4 |New 3 6 2023
5 |Stored
6
7
8
" v
< > Sheetl + .y ) >

Double click the file

UsingHartDLL.xIsm (Examples->HartDLL->Excel). Excel opens
and appears with a button on one of the sheets. Press the
button and the Visual Basic Editor will appear because the
program was stopped at a breakpoint.

In most cases the program will stop because no device is
connected. If you connect a real or a simulated device to the
com port which was opened by

"Cpen Com from Cell EZ2

"Configuration will be default

iComPort = Range ("E2")

hDrv = BHDrv OpenChannel (iComPort)

the software will reach another Stop statement providing the

Tag Name of the connected device.

Modules

-3 Module While the module HartTest is containing
‘fi Hartinterface  the |ittle test program the module

' HartInterface contains the necessary

----- ¥ HartTest
structures and functions declarations.

The following is an example of the declaration of one of the
functions in the DLL.

Fuklic Declare PtrSafe Subk BHDrv FetchConnection Lik "BaHartDrv7e.dll"

[(ByVal hSrv

As Long,

pstrConnection As An} _

)

The declaration of structures has to be done like the following.

Type T _strConfirmation

byCmd Lz Byte
byRspl &s Byte
byRsp2 As Byte
byError L=z Byte

bylUsedRetries 4As Byte
byDevInBurst &As Byvte

iDuration 4=z Integer

L

1AppEey 4=z Long

L
usExtCmd 4=z Integer
byReservedl &s Byte
byDatalLen Lz Byte

L

sDhata As String * 255

End Type

HartTools 7.6.0 / 15.8.2023

Getting Started 12



Bo {4 t ﬂﬂﬁgﬂﬂﬁ!ﬁﬂ HartTools 7.6

HartX (Client)

Service Processing Flow Diagram

If the wait flag is set in the call of DoCommand the following
program flow is executed.

!

HartX.DoCommand

BHDrv_OpenChannel Register at a com port

A 4

BHDrv_ConnectByAddr Get the unique identifier
of the device

These services are

BHDrv_DoCommand automatically performed by
HartX if necessary.

\ 4
BHDrv_IsServiceCompleted

A

Poll for service
completion

A 4
BHDrv_FetchConfirmation Get the resulting data

A
HartX.DoCommand

l

Figure 8: HartX Service Flow (waiting for service)

HartTools 7.6.0 / 15.8.2023 Getting Started 13



Bo "t Embedded Solutions HartTools 7

.6

If the wait flag is cleared in the call of DoCommand will return
immediately. After the service completion an event procedure
will be called.

HartX.DoCommand

BHDrv_OpenChannel Register at a com port

A 4

BHDrv_ConnectByAddr Get the unique identifier
of the device

These services are

BHDrv_DoCommand automatically performed by
HartX if necessary.

If the command is sent using

the HartDLL the call is
A timer control is used to returning immediately.

poll for the completion of the
service.

BHDrv_IsServiceCompleted |¢

Poll for service
completion

\ 4
BHDrv_FetchConfirmation Get the resulting data

HartX.CommResult

Figure 9: HartX Service Flow (not waiting for service)

HartTools 7.6.0 / 15.8.2023 Getting Started

14



Bo "t Embedded Solutions

HartTools 7.6

Principle of Operation

User Application

BaHartX76.d1l1l

( !
HartX Functions Start Service
Y
Service Handler < Yes Done?
Redlifie | Hart Protocol Thread e
functionality art Frotocol threa Sleep 10 ms
\ v I—

PC Com Port

HART MODEM

Figure 10: The Internal Structure of the DLL

The figure above shows that the HartX is using is using its own
thread for the real time application. Thus the calling thread may
be of any kind. Even if HartX is waiting for the completion of the
service it is taking the calling thread into sleep mode.

User Application

Thread 1 Thread 2 Thread 3
BaHartX76.dll(1) BaHartX76.dll(3)

BaHartX76.dll(2)

Figure 11: The DLL can be used by different Threads

HartX may be called from several threads. The functions and
communication services are thread safe.

HartTools 7.6.0 / 15.8.2023 Getting Started 15



Automation
O" Embedded Solutions HartTools 7.6

Visual Studio

Open Visual Studio and create a new project for a Windows
Forms Application.

It is not necessary to install HartX76 on the toolbar. A simple
reference to the library is enough.

-o|B-e |0 - ¢ - Debug ~ AnyCPU - b St~ 0| | @ .

Selution Explorer =
@8 - ¢aB sl
Search Solution Explorer (Ctrl+ )
3] Solution 'UsingHartX' (1 of 1 project)
4 UsingHartX
b Properties P Assemblies
4 § References

Reference Manager - UsingHartX

| b Projects MName

& Analyzers BaSlavex76.dll
=B BaHartX76 b Shared Projects aBVEA /T,
e ! BaHartX76.dll
L b COM

u-B Systermn.Data
u-B0 System.Drawing 4 Browse
=B SysternWindows.Forms

Recent

=B Systermn XML
¢7 app.config
c# Ascemblylnfo.cs
BaHart¥76.ico
&* CHelpers.cs
&* ClicenseHartX.cs
P = frmMain.cs

>
>

The best way is to select the component from the path xAnyCPU
because this library can be used in a 32 bit as well as in a 64 bit
environment.

The next step is to set a reference in the nhamespace section.

namespace TestHartX

{
using BaHartTools76.HartX;

public partial class frmMain : Form
{

public frmMain ()

{

InitializeComponent () ;

}

You should not forget to handle the licensing issue. Therefore a
reference to the license module is set.

I recommend to include the module as a link to make sure that
the module is shared and remains on its original place.

A variable is required to store a reference to the HartX.

public partial class frmMain : Form

{
private CHartX hartX = null;

public frmMain ()
{

HartTools 7.6.0 / 15.8.2023 Getting Started 16



Bo "t Embedded Solutions

HartTools 7.6

The instance of HartX is inserted in the form load event handler.
With setting the com port the HartDLL is loaded by the HartX
and a channel for the communications is opened.

But before setting the com port the license has to be set in the
HartX.

private void frmMain Load(object sender, EventArgs e)
{
this.hartX = new CHartX();
this.hartX.ValidateLicense

("30-Days-Trial-User-License",
"Ea58v60F-x3jk-wi9n-RrI3-7c072aA6ae0B") ;
this.hartX.ComPort = 2;
}

A button and a text box are used to perform some action.

Properties MRS frmain.cs® frmMain.cs [Design]® X_
butGetTag System.Windows.Forms.Butten - g
= EN = eE! Test HartX [= ===
Tag i 5 £
] Get Tag Name [
“ = a]
(Mame) butGetTag
GenerateMember True
Locked Falze
Meodifiers Private

The code required for reading the tag name is very short.

private void butGetTag Click (object sender, EventArgs e)
{
if (this.hartX.IsValidComPort)
{
// Read the tag name
this.txtTagName.Text = "reading ...";
this.hartX.XReqlLen = 0;
this.hartX.DoCommand (13, true);
if (this.hartX.LastError == CHartX.EN LastError.ERR Success)
{
this.txtTagName.Text = this.hartX.P13TagName;
}
else
{
this.txtTagName.Text = "Error!";
}
}
}
When clicking the button 'Get Tag Name' the following
communication sequence is shown by FrameAlyst.
File IW Commands Trigger/Fiter | Services Slave Cptions Test/Diagnostic
Operation Communication Hart Behavior View
W Record Com Port: lm Preambles: m [+ Preambles ¥ Frame Numbers
Poll Address: [2_00 Link Role: [Pimany | | | W Address ™ Decoded Data
Baudrate: |1200 [~ Master [ Slave [+ Timing [v Status Details
1: --->S5TEP|FF FF¥ FF FF FF|0Z |80 ICmd 01 0] 1821
2z SS:SACKDIFE FF FF FF FF|08|20 ICmd 01141 0]00100000|254/Man251/Devls/5 PRs/Harts/Tx10/Swl0/Hw
216< Cold Start
3:  38>LSTXF|FF FF FF FF FF|82|BB 01 00 12 &7|Cmdl3| 0] 1401
4- 1‘§:LACKPIFE FF FF FF FF|86|BB 01 00 12 &7|Cmd13123| 000000000 |WALTER_ / /Date:7.11.1939
333<

HartTools 7.6.0 / 15.8.2023

Getting Started

17



Automation
O" Embedded Solutions HartTools 7.6

The HartX is firstly sending command 0 to get the unique
identifier. Then the command 13 is used to get the Tag Name.

Excel

Before you can start to use VBA in Excel you have to activate
the developer tabs in Options->Customize Ribbon.

Customize Ribbon

Add-Ins

Trust Center

Quick Access Toalbar

= erner [
] F Conditional Formatting 3 H Alignment
Ig Connections Number
53 Copy E Styles
§F] Custom Sort... Cells
#  Cut Editing
A~ Decrease Font Size V] Insert
& Delete Cells... - Page Layout
W' Delete Sheet Columns 4 S Farmulas
= Delete Sheet Rows << Remove Data
(=1 E-mail Review
< Fill Color » ] View
= Filter [¥] Developer
Font T [¥] Add-Ins

To be sure that your macros (VBA program) are saved too you
have to store the file as macro-enabled workbook.

| ReadPVs

| Excel-Arbeitsmappe mit Makros (*.xlsm)

The example is using a button for starting and a textbox for the
com port number.

A B
Read PVs |

Com Port: | 1

TR W R

HartX is not a .net control but only a component. Therefore it
has to be addressed by a reference. VBA does not accept a
reference to the dll but to the type library (tlb) file.

ReadPVsxlsm - Microsoft Excel  The reference has to be set in the code

Der Window which is opened by the

Froperties | selection of ‘View Code’ in the
Developer tab.

== | (el view Code
|Design ) Source
[ Mode | @ Run Dialog

Controls

<

Debug Run | Tools  Add-In= Window Help In the code window the

8 b g o B References.. -, menu Tools has the menu

Additional Controls... item References. After a
Codd) [ o= Macros... click on this option the
|!Declaration= Qptions... reference select Window
VBAProject Properties... opens.

Digital Signature...

ieadData Click()

HartTools 7.6.0 / 15.8.2023

Getting Started 18



Automation
O" Embedded Solutions HartTools 7.6

Visual Basic For Applications

Microsoft Excel 16,0 Object Library |
OLE Automation

Microsoft Office 16,0 Object Library

Microsoft Forms 2.0 Object Librar

Hart¥ - Hart Tools 7.6 Component for the Hart Com

[] AccessibilityCplAdmin 1.0 Type Library

[] Acrobat

Click on browse and navigate to the tlb of the HartX.

BaHartx76.dll 18.06.2023 19:28
D BaHartX76.tlb 03.06.2023 16:11
BaSlavex7e.dll 18.06.2023 19:28
UserDevsimSlave7a.dll 18.06.2023 19:28

Next is to declare an object using the HartX reference.
E Microsoft Visual Basic for Applications

Datei  Bearbeiten Ansicht Einfligen Format Debuggen  Ausfihren  Extras  Add-Ins  Fenster

HE-d b W] & & % @ 21,51
Projekt - VBAProject
. . il P ReadPVs.xlsm - Hart¥example (Code)

7| |(angemein) ~| | (Dekiarationen)
E-&% VBAProject (ReadPVs.dsm)
-5 Microsoft Excel Objekte
DieseArbeitsmappe
Hart¥example (Read PVs)
Options1 (TabelleZ)
i Options2 (Tabelle3)
F-[27 Module
(27 Klassenmodule

Dim HartX As New BaHartX76.CHartX

Private 3Sub ButReadPVs Click()
Dim byComPort As Byte
Dim £ As Integexr
Dim £ As Single
Dim sUser As String
Dim sLicense As String

The example is coded in the event procedure of the button.

Priwvate Sub ButReadFVs Click()
Dim byComPort As Byte
Dim & As Integer
Dim f Zs S5ingle
Dim sUser &Ls S5tring
Dim sLicense As String

'Set the user license caode
sUzer = "30-Days-Trial-User-License"
slLicense = "EaS8ve60F-x3jk-wi9n-RrI3-7c072aR6a=0B"

Hart¥.ValidateLicense sUser, sLicense

byComPort = Val (TxtComPort.Text)

If (byComPort > 0} And
(byComPFort < 255) _

Then

The first call of the HartX should be the call of the
ValidateLicense method in order to set the HartDLL into a
functional mode.

HartTools 7.6.0 / 15.8.2023 Getting Started 19



BO"' Embedded Solutions HartTools 7.6

However the simulation of PVs also works without any License
code.

! Set the com port The only thing to do for the communications is to set
Hartk.cComfort = byComPors the com port to which the Hart device is connected to.

' Switch on simulation of the PVs
HartX.5imPvEnakbled = True

: - The property SimPvEnabled is setting the simulation
' Set the amplitude to 10.0

HartX.SimBmplitude = 108 mode of the HartX. If this mode is set the PVs are

' Initislize the cells simulate between values set by the SimulateAmplitude
Cells(l, 4) = "Number"

Cells (1, 5) = "BV 1" property.

Ccells(l, &) = "BV 2"

The ‘main program’ of the example is a for loop reading

For e = 0 To 18
Cells(e + 2, 4) = mn two PVs from the device for 20 times and writing the
Cells{e + 2, 3) = "% results to the worksheet.
Cells(e + 2, 6) = "n
'DoEvents The call of DoAction is driving the simulation of the PVs
fext = and simulates a delay of 200 ms like the
‘Read 20 times BV 1 and BV 2 communication would do. In the case the simulation is
For e = 0 To 18 switched of DoAction would run the Hart protocol
f:i'noacum ° activities. After running the example the worksheet will
Cells(e + 2, 4) = Format(f, "0.0") |ook as below.
f = HartX.p03Pvl
Cells(e + 2, 5) = Format(f, "0.0") jNumber PV 1 v 2
f = HartX.p03Bv2 Read PVs 0.0 0.0 ;20
Cells(e + 2, 6) = Format(f, "0.0") L0 21 &0
'DoEvents r_______ Eﬂ 53 ;ED
Hext = Com Port: | 124 3,0 8,1 -6,0
2,0 3,5 "s,0
5,0 "0,0 4,0
5,0 3,5 "3,0
7.0 81 T30
3,0 5,9 "1,0
3,0 3,1 0,0
"0,0 0,0 0
11,0 "31 2.0
12,0 X 3,0
13,0 g1 3,0
14,0 3,5 5,0
"s,0 10,0 .0
"16,0 79,5 7,0
17,0 g1 3,0
18,0 "s,9 5,0
9,0 0,0 10,0

Running it with the simulation switched off, the example will
communicate with the real device.

' Switch off simulation of the FVs
HartX.5imPvEnakled = False

The worksheet may look like it is shown below.

HartTools 7.6.0 / 15.8.2023 Getting Started 20



BO"I Embedded Solutions HartTools 7.6

Number PV 1 PV 2
r r -

Read PVs '0-0 '1?.? r1816,9
1,0 17,2 1816,9
2,0 Rs,7 8232

Com Port: | ¢ "0 fis.9 n1823,2
1,0 As.4 8386
5,0 14,1 44,8
.0 A31 M861,9
7.0 M3,3 M861,9
8.0 12,5 M872,4
5,0 2,3 Ns72,4
0,0 11,6 "13883,5
11,0 10,2 "1893,1
12,0 0,1 2931
EX "0,5 "1906,1
4,0 0,8 "1912,7
"s,0 11,5 M912,7
"6,0 A2 Ms12,0
17,0 12,1 "1936,0
2,0 12,7 "1936,0
9,0 2,0 M93s,1

If you run FrameAlyst during the session you can see the
communication activities.

Lower Range:
Upper Range:

Range :

Current:

ifl User Slave Comm

'SLV TAG
Long Tag Name: 'Slave Long Tag

Before starting to accept the command 3 requests HartX is
automatically sending command 0 to retrieve the unique
identifier from the device.

HartTools 7.6.0 / 15.8.2023 Getting Started 21



BO"‘ Embedded Solutions HartTools 7.6

SlaveDLL (Server + OSAL)

Of course, a hard slave simulation can also only be built on the
basis of the slave DLL. This example shows how to do this.

To make the example clear, the structure is as simple as
possible. The appearance of the client is as follows.

D

pir C¥ Bxample for the HartSlaveDLL = p o4
Com Port: Last Emor:  No Com Port
Baud Rate: |1200 ~ A valid com port must be selected before slave
can be enabled.
Poll Address: (O Enabled
Request:
Response:
Exit

As soon as the correct com port, baud rate and polling address
have been selected, the slave can be enabled and responds to
the commands of a connected master.

D4

pii C¥ Example for the HartSlaveDLL = >
Com Port:  COME Last Emor:  COMO.K.
Baud Rate: 1200 A valid com port must be selected before slave
can be enabled.
Pall Address: 00 B Enabled

Request: Cmd000. no data bytes.

Response: Cmd000, Rsp1: 0, Rep 2: 0, 21 bytes of data.

Exit
With the other slave simulations, the simulation was integrated
in a dll. In this example, however, everything takes place in one
application.
The management of the slave, if you can call it that, is housed
in a simple timer.

private void Tim50_Tick(object sender, EventArgs e)

{
switch (this.status)
{
case EN_Status.IDLE:
status = EN_Status.READY;
break;
case EN_Status.READY:
this.handleOfService = HartSlaveDLL.BHSlv_GetRequest(this.handleOfChannel,
ref command, ref indInfo, ref datalen, ref data[@]);
if ( this.handleOfService != HartSlaveDLL.INVALIDserviceHandle)
{
status = EN_Status.WAIT_RESPONSE;
}
break;
case EN_Status.WAIT_RESPONSE:
CommandInterpreter();
break;
}

When working with baud rates higher than 1200 bit/s, such a
simple timer is no longer sufficient and the developer should
consider using a worker thread that works in ms cycles and

HartTools 7.6.0 / 15.8.2023 Getting Started 22



Bo f’t ﬂﬂsgﬂﬂﬂﬂn‘! HartTools 7.6

implements an asynchronous connection to the application.
Such a worker thread could represent a cycle of 1 ms.

The command interpreter is extremely simple. But the example

is only intended to show how such an application works in

principle.
private void CommandInterpreter()
{

byte responsel = 0;

byte response2 = 0;

switch (this.activeCommand)

{

case 0:
bytesOfData[@] = 254;
bytesOfData[1] = dllconfiguration.ManufacturerID;
bytesOfData[2] = dllconfiguration.DevicelID;
bytesOfData[21] = ©;
countOfBytes = 21;
responsel = 0;
response2 = 0;
HartSlaveDLL.BHS1lv_PutResponse(..., responsel, response2);
this.status = EN_Status.IDLE;
break;

case 1:
bytesOfData[@] = 32; // Temperature unit
HartSlaveDLL.BHS1lv_PutFloat(23.00f, 1, ref bytesOfData[@],

HartSlaveDLL.MSBfirst);

this.countOfBytes = 5;
responsel = 0;
response2 = 0;
HartSlaveDLL.BHS1lv_PutResponse(..., responsel, response2);
this.status = EN_Status.IDLE;
break;

default:
countOfBytes = 0;
responsel = 64;
response2 = 9;
HartSlaveDLL.BHS1lv_PutResponse(..., 64, 0);
this.status = EN_Status.IDLE;
break;

}

}

The connection to the SkaveDLL takes place exactly like the
connection to the HartDLL via a corresponding C# file
(BaHartSIv76_Iface.cs).

[D11Import("BaHartS1lv76.d11", CharSet = CharSet.Ansi)]

// The function allocates the selected com port if possible and starts its own working
// thread for accessing Hart services. The value which is returned is a handle which
// has to be passed to all functions which are requesting any access.

// comPort: Number of the PC com port (1..255)
// baudRate: Bits per second
// return: Com port could not be registered, Any other value: Registration successful

public static extern int BHSlv_OpenChannel(int comPort, int baudRate);

[D11Import("BaHartS1lv76.d11", CharSet = CharSet.Ansi)]

// It is required to call this function at least when the application is terminating.
// channel: The handle which was returned by OpenChannel

public static extern void BHS1lv_CloseChannel(int channel);

HartTools 7.6.0 / 15.8.2023 Getting Started

23



Bo "t Embedded Solutions

HartTools 7.6

SlaveX (Server)

Examples
Commeon
HartDLL
Hartx
SlaveX
s
UserDevSimClient

UserDevsimSlave

4 SlaveX
Pl UserDevSimClient
b J Properties
P @ References
4 01-Main
b E5 frmMain.cs
P * Program.cs
[ 02-Medules
3 03-Interfaces
¢1 app.config
BaSlaveXT76.ico
P c* Settings.cs
Pl UserDevSimSlave
b J Properties
P o References

F 01-Main

b c# CBaHartDevSim.cs
B 02-Medules
P 03-Interfaces

Test Client

78
Com Port: |COM1 g Slave Simulation:
DLL Name: UserDevSimSlave76.dl Load Enabled
DLL Status:  Simulation active ... &

Exit

Since the slave simulation is only one component that is
implemented in the form of a dll, you need a Windows process
that loads this library. A simple executable program, the
appearance of which is shown above, is sufficient for this.

The client loads data from the simulations dll via a more or less
standardized interface and displays them.

The solution (UserDevSimSlave.sIn) is located in the examples
area in the SlaveX directory.

The projects for the test client and the slave simulation are
located in the associated subdirectories.

Slave Simulation

On the left you can see how the projects are displayed in the
solution explorer in Visual Studio 2019.

The hard slave simulation is located in the UserDevSimSlave
project and starts in the CBaHartDevSim.cs module.

To simplify debugging, I recommend first marking the
UserDevSimClient project as the start project.

There are two options for configuring the environment. In
general you should choose 'Debug' with AnyCpu, because then
it doesn't matter whether the computer works with 32 or 54 bit.
Debug - x86 is only recommended if you want to debug a 32-bit
environment on a 64-bit computer.

HartTools 7.6.0 / 15.8.2023

Getting Started 24



Bo "t Embedded Solutions

Hart Tools 7.6
CommonC
CommonC#
CommeonVb

Debug

Com Port: |COME

Slave Simulation:
B Enabled

Home Commands | Trigger/Fitter

ticn Communication

sord Com Port:  CcOM7

Hart Behavior

Preambles: |5 -
Link Role: |Primary -

¥ Master [ Slave

Using FrameAlyst as Debugging Master

Of course you can also use FrameAlyst for testing the Hart
communications. The diagram below shows how such a
configuration works.

UserDevSimClient76.exe BaHartFrameAlyst76.exe

Hart Analyser and
Test Tool
(Client)

Slave DLL Test
Client

UserDevSimSlave76.dll

Slave Device
Simulation DLL
(CBaHartDevSim)

BaSlaveX76.dll

SlaveX DLL
(CHartX)

BaHartSIv76.dll BaHartDrv76.dll

Hart Slave DLL Hart Master DLL
(HAL) (HAL)
COM6 COM7

Figure 12: Using FrameAlyst as Master

The Debug subdirectory should be used.

Please note that the native DLLs (BaHartSIv76.dll and
BaHartDrv76.dll) are not found in the debug directories but in
the Windows system directories for 32 or 64 bit libraries.

The correct com port must be selected in the slave test client.

In addition, the slave must be activated.

The correct com port must be selected in FrameAlyst.

Furthermore, the master must be activated in FrameAlyst.

HartTools 7.6.0 / 15.8.2023

Getting Started

HartTools 7.6



Bo f’t ﬂﬂsgﬂﬂﬂﬂn‘! HartTools 7.6

User Slave DLL in FrameAlyst

Hart Behavior ——  Of course, the slave user simulation can also be loaded in

e |G =l FrameAlyst. The following steps are necessary for this.
Link Raole: IPI'il'ﬂﬂr)' vl

First, the slave emulation must be activated in FrameAlyst. This
[V Master [ Slave

is done on the 'Home' tab.

SrmrEin Dl Next, the check mark for UserDLL must be set and the device
oz 3= simulation DLL must be loaded using the Load button.

MName: I -

Status: | DLL not loaded! &8

S ey Bl The display then looks like it is shown on the left.

Load ¥ User DLL

Name: | UserDevSimSlave 76.dl

Status: I Com port emor! (7}

Settings
Com Port:  COMG o

Paoll Address: IA_{]-]} vl

However, a valid com port must now be selected.

Simulation DLL Settings
¥ User DLL Com Port:  COME - ManulD: |253 Un 1D2: IZ Short Tag: l
Name: | UserDevSmSiave76dl | | Foll Address: [A 00  v|  DeviD: [253  unibz: [3 Long Tag |
Status: I Simulation active ... &) Un ID1: |1 [
1: ---=5STHP|Cmd 0| 0Ol 1821 er Slave
93< F1
2: 0>SACKP|Cmd 0]24| 0]00100000|254/Man253/Dev253/5 DR :

MinPARrsp: &/MaxNumDVs : 4,
ManulID:0x002&/LabDistI]

288< Cold Start

3:1€044>LETHP|Cmd 1] O] 1C3|
130<

4: 0=LACEP|Cmd 1| 71 0100000000|PV 1:16,€1075 l/minute
la4<

5: B8€37>LSTEPICmd 3| 0] 1T
130<

€ 0>LACKEP|Cmd 3|2&| 0]00000000|Curr:9,454984 mR/DPV 1:
335<

ng Tag Hame'

) COM 7| Menitoring active | Master and Slave Emulator active | Switch record off to stop monitoring & 0000006 T &)

HartTools 7.6.0 / 15.8.2023 Getting Started 26



BO"I Embedded Solutions HartTools 7.6

Python Example

The module demonstrates the use of the HartDIl from HartTools
7.6. It is kept very simple and shows the basic procedure for
loading and using the Windows DLL HartDrv76 in Python 3.7.9.
The example is loading the DLL, registering the license and
establishing a connection with a hart slave.

4 Python In fact, the whole implementation consists of a single

N Phyton _ module. The references and search paths filter are empty.
# [ Python Environments

®B References The main part of this program is shown below.
u-B Search Paths
PY HartDLL-Example.py

# Load the dll
Hartdll = windll.LoadLibrary("BaHartDrv76.d11")
# Register license
Hartdll.BHDrv_ValidatelLicense("30-Days-Trial-User-License".encode(),
"Ea58Vv60F-x3jk-wi9n-RrI3-7c072aA6aedB" .encode())
# Open a channel on com port
myhandle = Hartdll.BHDrv_OpenChannel(comport)
# Connect to a device if it is a valid com port
# Address = @, WaitForService = 1, NumRetries = 2
if myhandle != -0x1:
print(" Connecting to device at address ", address)
print(" Waiting for service completion ..")
myservice = Hartdll.BHDrv_ConnectByAddr(myhandle, address, 1, 2)
if myservice != -0x1:
Hartdll.BHDrv_FetchConnection(myservice, byref(connectionData))
if connectionData.ServiceCode ==
print(" ------ Device Data ------ ")
print(" Manufacturer Id: ", connectionData.ManIdByte)
print(" Device Id: ", connectionData.DevId)
print(" Command Response: ", connectionData.RespCodel)
print(" Device Status: ", connectionData.RespCode2)

print(" ------ Hart DLL --------- ")

print(" Service Completion Code: ", connectionData.ServiceCode)
else:

print(" ------ Hart DLL --------- ")

print(" Service Completion Code: ", connectionData.ServiceCode)
else:
print(" HartDLL out of service handles!")

else:

print(" Could not open com port: ", comport)
# Close channel if valid
if myhandle != -0x1:

Hartdll.BHDrv_CloseChannel(myhandle)

This shows a certain superiority of an interpreter like Python.
Python has fully implemented handling of DLLs. Therefore,
special declarations are not necessary when dealing with the
Hart DLL. Only the structures that are given to the DLL as
records need to be declared, since the Python interpreter cannot
guess that.

CaUserswaltenappDs X+ v Running the program delivers the output as it is

Communication with Hart shown on the left.
Connecting to device at address
Waiting for service completion ..

Device Data

Manufacturer Id:
Device Id: 253
Command Response:
Device Status: ©
Hart DLL
Service Completion Code: 5
Press <Enter> Key to finish ...

HartTools 7.6.0 / 15.8.2023 Getting Started 27



Bo "t Embedded Solutions

HartTools 7.6

Visual Studio Code Example

Using the HartDLL in C+- X

+

Although Visual Studio Code is only an
editor, it can be configured extensively.

Com port:
Baud rate:
Unique Id:

Tag:
Descriptor:
Date:

Last Command:
Response:
Device Status:

6
1200

SLV TAG

16/06/2023
013

000
00000000

253,253,001,002,003

MY MEASUREMENT

Since VSCode is becoming more and more
popular, I've set up an example Hart DLL
on top of this software.

It is the same software as in the
UsingBaHartDrvCpp example.

A GNU compiler was used for
demonstration purposes. It is the MinGw

set new date (y/n)?
Reading tag descriptor and date was successful ..

version. To learn how to integrate MinGw
into VSCode, please follow this link:

https://code.visualstudio.com/docs/cpp/config-mingw.

In the examples you will find the VSCode variant in a separate path, as shown on the left.

Examples
Common
HartDLL

c#

C++

Excel
Phytan
Visual Basic
VSCode

wscode

wvscode
[ makefile
(.ﬂ UsingBaHartDrnV5Code.code-workspace

4 [%] UsingBaHartDrvCpp

[ [} |

P&

4 r
B

4 T

v W VT W v v 7

4 r

[
P
[
P

References

External Dependencies
01-Main

++ CAppMainUser.cpp
02-Cemmon
BaHartDr/76.h
CAppMain.h

[A CHartlib.h
COSALh

++ CWConsole.cpp

[M CWConsole.h
CVHartlface.h
03-Windows

++ CAppMainWin.cpp
++ COSAlwin.cpp

++ CWConsoleWin.cpp
++ CWHartlfaceWin.cpp

The application name is
UsingBaHartDrvVSCode. To open ot VSCode
I created a workspace. This file is named:

UsingBaHartDrvVSCode.code-workspace.

The screenshot on the left shows the division into the individual
modules. Here, as an exception, I took the representation in
Visual Studio 2019, since VSCode is not necessarily a prime
example of clarity. The dependencies are implemented in the
VSCode project in the associated makefile, which you can find in
the workspace path (see above).

The output directory is the general debug directory for 'Any
CPU' and 64 bit modules.

I don't want to leave one special feature unmentioned. While
the '02-Common' subdirectory contains modules that are valid
for all platforms, the 03-Windows directory is intended for the
components that are used specifically for Windows.

The following shows how the code from the example application
is further realized.

/ The 'main’
void CAppMain::Execute

i CVConsole::Init(STEADY_DISPLAY_WID
STEADY_DISP

! CVConsole::Set itle("Using the HartDLL in C++");

The outputs and inputs are made via a console. Behind this is
access to the Windows terminal. The applied methods are
defined in the CVConsole class.

HartTools 7.6.0 / 15.8.2023

Getting Started 28


https://code.visualstudio.com/docs/cpp/config-mingw

Automation
or’ Embedded Solutions HartTools 7.6

Siclass CVConsole

{

public:

i static void Init(uint8_t t_steady_area_width,

: uint8_t t_steady_area_height);
! static void WaitForExit();

! static void Terminate();

i // General functions
i static void SetTitle(char_t* tp_text);
\ static void DisplayStatus(char_t* tp_text);

7 Output functions

! static void Print(char_t* tp_text);

i static void Print(uint8_t t_line, char_t* tp_text);

i static void Printf(uint8_t t_line, char_t* tp_format, ...);

; // Input functions

! static uint8_t QueryUint8(char_t* tp_prompt);
i static uint16_t QueryUint16(char_t* tp_prompt);
i static bool8_t QueryYes(char_t* tp_prompt);

i static void ClearInputLine();

For example, the function Init looks like this.

void CVConsole::Init(uint8_t t_steady_area_width,
= uint8_t t_steady_area_height)
{
i // Change language
system("chcp 437");

// Init steady display area
s_steady_display_width = t_steady_area_width;
s_steady_display_height = t_steady_area_height;

// Get the cosoles handle
s_std_handle = GetStdHandle(STD_OUTPUT_HANDLE);

// Get original mode
GetConsoleMode(s_std_handle, &s_saved_mode);

// Get the screen buffer information
GetConsoleScreenBufferInfo(s_std_handle,
&s_screen_buffer_info);

// Set virtual terminal mode

s_new_mode = s_saved_mode |
ENABLE_VIRTUAL_TERMINAL_PROCESSING;

SetConsoleMode(s_std_handle, s_new_mode);

// Clear display
ClearSteadyDisplay();

// Register the local handler
SetConsoleCtrlHandler(MyHandler, TRUE);

// Hide the xursor
1 DisableCursor();
}
The realization here still looks relatively abstract for the most
part, but it already accesses certain functions of the console
API. A look at the ClearSteadyDisplay() function shows how
further refinements are being made.

HartTools 7.6.0 / 15.8.2023 Getting Started 29



BO"‘ Embedded Solutions HartTools 7.6

void CVConsole: :ClearSteadyDisplay()

WORD attribs = GetTextAttributes();
char_t tmp[200];

Enable linr drawing characters
std::cout << ESC ENABLE_DRAWING;

for (SHORT e = @; e < s_steady_display_height; es++)

std::cout << CSI CLEAR_LINE << "\r";
if (e == 0)

tmp[@] = Ox6¢;
tmp[s_steady_display_width - 1] = @x6b;
memset(&tmp[1], Ox71, s_steady_display_width - 2);
3
- 2
= . else if (e == (s_steady_display_height - 1))

tmp[@]) = 9x6d;
tmp[s_steady_display_width - 1] = @x6a;
memset(&tmp[1], Ox71, s_steady_display width - 2);

tmp[0] = 8x78;
tmp[s_steady_display width - 1] = @x78;
memset (&tmp[1], , S_steady_display width - 2);

steady_display_width] = @;

yleTextAttribute(s_std_handle, STEADY_DISPLAY_COLOR);

ribute(s_std_handle, attribs);

DISABLE_DRAWING;

std::cout << ES
/ ore att

1

SetCo

eTextAttribute(s_std_handle, attribs);

This function 'paints' the background and the border of the
white display area and is not quite as trivial as the two higher
levels. But the function is self-contained and therefore easier to
understand.

Com port: 7
Baud rate: 1260
Unique Id: 253,253,001,002,003
Tag: SLV TAG
Descriptor: MY MEASUREMENT
Date: 14/04/2023
Last Command: 813
Response: 668
Device Status: 00600000

Set new date (y/n)?
eading tag descript

The integration of the HART protocol communication software is
designed similarly to the integration of the console. The basis
here is the HartTools DLL together with the header file
BaHartDrv76.h. The class with the access functions is declared
as follows.

HartTools 7.6.0 / 15.8.2023 Getting Started 30



Automation
or’ Embedded Solutions HartTools 7.6

£class CVHartIface

{
public:

1 static void Init();
| static void Terminate();

static bool8_t OpenChannel(uintl6_t t_port);

static void CloseChannel();

static void SetPrimaryMaster(bool8_t t_primary);

static bool8_t IsDeviceConnected();

i static bool8_t ReadTagDescriptorAndDate();

: static bool8_t IsDateValid();

: static bool8_t SetNewDate(uint8_t t_day, uint8_t t_month, uintl6_t t_year);

: static uint16_t GetBaudRate();

| static uint8_t GetDay();

i static vint8_t GetMonth();

] static uintl6_t GetYear();

| static char_t* GetTag();

i static char_t* GetDescriptor();

1 static void GetUniqueId(uint8_t* tp_long_addr);
i static vint8_t GetlastCommand();

i static uvint8_t QstResggnse();

i static void GetDeviceStatus(char_t* tp_status);
: static bool8_t GetConnected();

The functions of this class then access the interface of the DLL.
static bool8_t IsCmdSuccessful(T_DRV_HANDLE th_drv,

uint8_t t_comd,
uint8_t* tp_req_data,
uint8_t t_req_data_len)

bool8_t result = FALSES;

T_HSERVICE h_srv;

if (th_drv == INVALID_DRV_HANDLE)

{

| return FALSES;

}
t_cmd,
DRV_WAIT,
tp_req_data,
t_req data_len,
o,

if (h_srv != INVALID_SRV_HANDLE)

BHDrv_FetchConfirmation(h_srv, &s_confirmation);
if (s_confirmation.ucError == SRV_SUCCESSFUL)

result = TRUEB;

s_last_command = t_cmd;

s_response = s_confirmation.ucRespCodel;
s_device_status = s_confirmation.ucRespCode2;

1se if (s_confirmation.ucError == SRV_NO_DEV_RESP)

s_connected = FALSES;

s i o T PNt ok gt |

D R e Ly )

return result;

o A T i B 3 S It St s e o

HartTools 7.6.0 / 15.8.2023 Getting Started 31



Bo s t g"‘gs‘g‘ﬂgs'!g'g HartTools 7.6

Detailed Descriptions

FrameAlyst

When the development of FrameAlyst was started it was mainly
targeted to simply monitoring Hart frames to detect errors in
the device implementation.

Later the tool was expanded to use the HartDLL for the
emulation of a master function.

In the recent years also a slave emulations were introduced.
While in the latest implementation either a slave or a master
emulation was available today the new FrameAlyst is supporting
both functionalities at a time.

Features

The main features which are supported by FrameAlyst are the
following.

e Master emulation

e Slave emulation

e Slave DLL interface

e Trigger functions

e Filter functions

e Scripting

e Command data decoding

e Storing recorded data

e Test and diagnostic functions
e Integrated services

e Coding and Decoding

e Data syntax editor

e Data logging in xml-format

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 32



Auvtomation

Embedded Solutions

Borst

HartTools 7.6

Functions and Menus

Common Elements
The handling of FrameAlyst is based on tabs rather than menus.

Clear all buffers and start
new monitoring session.

Show and hide the emulated |

Hide tabs display to have
more space for frames.

| Switch monitoring on/off.
| Repeat last activity.

’ Show users manual.

L]

wn Hart Tools slave.

TN

360< Cold Start

0=LACEP|Cmd 23|2€| 000100000 |Curr:7,€26915 mi/PV |

Hide Slave Clear Display Cmd 3 Record Off Hlde Tabs Infa
File | m | Commands Trigger/Fitter | S\m'?\re‘ | Options | Test/Diagnostic |
Operation Communication ———— [ Hart Behavior Wiew
W Record Com Port:  COM2 - Preambles: m [~ Preambles [~ Frame Mumbers
Poll Address:  A_p0 = Link Role: [Pimary  v| | | [~ Address ¥ Decoded Data
Baudrate: lm ¥ Master W Slave Ird Timing ¥ Status Details
130< ~

1 COM 2 | Menitering active | Master and Slave Emulator active | Switch record off to stop monitoring.
e

@) 0000002

T: &

Com port status.

Indication of recording.

Number of recorded

Trigger status

frames. indication.
Display Items (Frames)
Frame numbers
Delimiter of the frame.
s, Framen art Firsf character: - m] X
B Iong address how Slave Clear Display User Cmd Record Off Hide Tabs Info |
S = short address
File ||Cummands | Test/Diagnostic |

3 character frame type
STX = master request
ACK = slave response
BCK = burst

Last character:

Send Com

B

l: --—>=55TXP|FF FF F|

P = primary master address
S = secondary master address

Emd36 | [Cmds | [a-D

| |Cmd21 | | Edit Cmd 21

Emd27 | [cmds

| [Editcmd | [Burst | | Edit Any Burst |

[cmd 11

| [Editcmd 11 | [XCmd | [Editxcmd |

182

92<

2: 0=SACEE|FF FF E UE|80

30&<
3: 23&B8-LSTXP|FF FF FF FF FF|82|BD FD 01

Time in ms since end of
previous frame.

0z

211«

I =LRCEP|FF FF FF FF FF|2€|BD FD 01 02

Time duration of the frame in
ms.

Preamble bytes

Address: 1 or 5 bytes
Command

03 |Cmd73| 5|

03 |Cmd73] 42|

|Cmd 0]24| 0]00000000]254/Han253/Dev253/5 PAs/Hart0/Txl/Swl/Hwl/FLOOOO100
MinPArsp: &/MaxNumDVs -4/CEfgChCnt : 0/ExtDevStat: EIEIUEIEIU
ManuID:0x002€/LabDistID:-002&/Profile-131|EF|

Cmd: 15
Cmd: 33

Reglata:

0100000000 |Ext Dev
Cmd: 15

Cmd: 33

Length of
response data.

RspData:

RspData:

|Num requested cmds: 2

/ Reglen: 0
/ ReglLen: 2
00 01|RR| |

00000000 / Num response cmds: 2

19 / RspCode: 0 |
41 RO 00 00 41 20 00 00 3F 80 00
13 / BspCode: O

41 SD BC 52 01 08 44 CD B2|71|

Status:
/ Bsplen:
EF 00 11
/ Rsplen:
00 00 11

@) 0000004 T

Device status.
Response code.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions

33



Automation
or’ Embedded Solutions HartTools 7.6

File Menu

Load recorded frames

Start new monitoring p fil
rom file.

session.

Pn, Hart Tools — O >

Slave Clear Display Cmd 1 Record Off Hide Tabs Info
IFlIe | Home | Comi | Slave | Optiones | Test/Diagnostic |

Exit FrameAlyst. | J Pprintall frames. |
[ Print selected frames
: S
E Ne— only

| Select all frames. Store recorded frames in

1: -——-ssTxH afile. Show the frames in the | 1321
3 standard browser.
2: 0=SRCEP|FF FF FF FF FF|0€|20 T T T T O0|FE FD FD 05 00 01 01 01 02 01 02 03 0€
306< Cold Start
3:1€850>-LSTEP|FF FF FF FF FF|S82|BD FD 01 02 03|Cmd 1] O] 1C31
1259<
4: 0=LACEP|FF FF FF FF FF|S€|BD FD 01 02 03|Cmd 1| 7| 90]00000000]11 41 SD DA F8|2F|
1859<
£ >
@) COM 5| Monitoring active | Master and Slave Emulator active | Switch record off to stop monitoring. &) ooooood T @

The frames are still stored in the format which was used in the
past. However when saving the frame data you may also select
an xml format or html format.

Home Menu

Preambles: 2..22
Master: Primary, Secondary

—

%, Hart Toolz|  Switch record on/off - m| x
Show Slave Clear Display User Cmd Record Off Hide Tabs Info
File | I Home mmands | Trigger/Fitter | Services | Slave | ns | Test/Diagnostic |
Operation Ci icati Hart Behavior View
¥ Record Com Port:  com2 - Preambles: |5 vl ¥ Preambles ¥ Frame Numbers Asptlons for the display of
rames.
Poll Address:  A_00 - Link Role: IPI'imaﬁ' vl ¥ Address ¥ Decoded Data
Baudrate: |12|}|} vl V¥ Master [V Slave v Timing [V Status Details
1
Jl A
ManuID:0x002€/LabDistID:002€/Profile:131|CF| L
306 Cold Start
6: 2344=LSTEP|FF FF FF FF FF|22|BD FD 01 03 |Cmd78| 91 |Hum requested cmds: 2
Cmd: 15 / Reglen: 0
Cmd: 33 / Reglen: 2
RegData: 01 02|&3| W
£ >
@) COM 2 | Menitoring active | Master and Slave Emi ctive | Switch record menitering. @ 0000007 T @

Activate slave emulation

Activate master functions

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 34



tnutomotion
or’ Embedded Solutions

Hart Commands Menu

HartTools 7.6

Repeat most recent List of additional

activity cyclically or commands.. Selection of a new slave
once. poll address is required
for command 6.

Sending a command
works only in master
emulation mode. B O %
Show Slave Clear] flay Cmd 3 Record Off Hide Tabs Info
Home ||m| fiager/Fiter | Servi | Slave | Options | Test/Diagnostic |
— [ Send Command |
I™ Cyclic Cmd0 | [Cmd2  |[cmd2 <] [Cmd38 |[Cmd36 |[cmds |[A-0 =] [Cmd21]|EditCmd21 |
[cmd2 | | |[cmd1 | [UserCmd | [EditUserCmd |[Cmd42 | [Cmd37  |[Cmd3 | [EditCmd® | [Burst | |EditAny Burst |
[cmd3 |[cmd12 | |EditCmdiz | [Cmd4s | [cmd 11 || EditCmd11 | [XCmd | |EditXCmd |
A Cmd: 15 / Rsplen: 19 / RspCodef| 0 ~

BspData: EF 00 11 41 A0 00 00 [[L 20 00 00 3F 20 00 00 0O
Cmd: 32 / RsplLen: 13 / RspCod a
BspData: 00 01 02 45 1 5E D2/ B 31 42 23 B2|Rel

__

Some commands

s require request data to
£:55559-LSTHE|FF FF FF q qui |Cmd 2| O 1cL]
130« be edited.

a: 0>LACKD|FF FF FF = |Cmd 2|2&| 0|00000000]|Cure:13,48352 mA/PV 1: 15,5 1/minute/DV 2: 1£41,356 ¥
< >
) COM 2 | Menitering active | Master and Slave Emulater active | Switch record off to stop menitering. ) 0000008 T @

Support of the extended
command (16 bit)
requires editing.
Trigger/Filter Menu
Switch off trigger. Filtering is used to suppress the display of
certain frames. However, recording is still
Regarding the device continueing in the background.
Fen, Hart Tools status triggering on = O *
single bits is possible. | o . ¢ UserCmd  RecordOF  HideTabs  Info
File | Hom Commands | Trigger. / Services | Slave | Options | agnostic |
— Trigger Filter
I Activated {7} OnCmds 2 [728 On oy B 7 || T UseFilter  Commands [~ [12 [ Jabber Bytes
I~ Prim Master [~ Scnd Master
4 Pre/Post: = I ™ Requests I~ Responses
[
az< Number of boints o b L ~
11:  0-SACKP|FF umber ot points to be '“[" Refresh the display. |/an253/0ev252/5 Pas/Hazt0/Txl/Sul
_ shown before and after * kPRrspre/MamNumDVs:4/CEgChint:0/E
Refresh the display. the trigger. rr=nulD:0:0026,/LabDistID: 0026,/ Drofila:
12: 4803>LSTXP|FF FF FF FF FF|82|BD FD 0l 02 03|Cmd73| 3| |Num requested cmds: 2
Cmd: 15 / Reglen: 0
Cmd: 32 / Reglen: 2
RegData: 0Ol 0Z|RS|
211<
13: 0>LACKP|FF FE F 2€|ED FD 01 02 03|Cmd78|42| 0]00000000|Ext Dev Status: 00000000 / Num respon
Cmd: 15 / Rsplen: 15 / RspCode: 0
RspData: EF 00 11 41 RO 00 00 41 20 0¥
< >
@) COM 2 | Menitoring active | d Slave Emulater active | Switch recerd off to step menitering. & ooooo13 T ()

The triggered frame is
marked.

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 35




BO"‘ Embedded Solutions HartTools 7.6

Slave Menu

FrameAlyst able to load a DLL for the

BaHartFrameLayst76.exe simulation of a slave device. This DLL is a

@ class library written in C#. Thus it is also

BaHartStdDevSimulation.dll

possible for the user to provide another slave
device DLL written in C#.

$ The device simulation uses BaHartX76.dll

BaHartX76.dll which is a shell for the native library

BaHartSlv76.dll.

BaHartSIv76.dll

Figure 13: Slave Emulation Architecture

The slave may be configured through FrameAlyst.

Some settings are required to control the
slave emulation/simulation DLL.

| File Home

Simulation DLL

Load
¥ User OLL

— O >

Hide Slave Clear Display Cmd 31 Record Off Hide Tabs Infa
Commands Trigger/Filter ices ’m Options Test/Diagnostic
Settings

ComPort: COM5 =  ManuD: 253  UnID2 [2 ShortTag: [SLVTAG |

Poll Address: |4 00 A DevlD: [253 UniD3: |3 Long Tag [Slave Long Tag

|
| BaHartStdDevSimula Preambles: |5 - UniD1: |1 Hart Rev: |Automatic -
AN

TEF|Cmd G| O] 1821 Measurement Handler Started
5 04 1/min
- 241 0|00100000|254/Man253/Devi53/5 y 004,78 mBar
The slave DLL may be MinPArsp: €/MaxiumbVs
loaded. ManulID:0x0026/LabDis
Cold Start

24>LETEP [Cmd 1| O] I1C3|
0=LACEP |Cmd 1| 71 Q100000000 (FV 1:11, 525961 1/mim

€3-L5TXP|Cmd3l| 2

|ExtCmd (512) |[No Datal

6: 0>LACKP|Cmd31l| 71 0100000000 |ExtCmd(S12) |44 45 01 [REurisiEs

Console output for the
slave simulation DLL.

Long Tag Mame: 'Slave Long Tag Name'

@ COM 2 | Monitoring active | Master and Slave Emulator active | Switch record off to stop monitoring. &) 0000006 T: &)

The slave interface of the HartDLL allows the developer of a
Hart master device to simulate any slave functionality and any
erroneous behavior of a Hart slave device.

Because the slave is running through a com port it can be be
part of a multidrop environment.

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 36



Auvtomation

Bo "t Embedded Solutions

HartTools 7.6

Options Menu

If FrameAlyst is top
most it may no more be

Specifies how many
times the master should

Jabber octets (ghost bytes) are
sometimes generated by the MODEMs

The display colors may overlapped by other retry a service if enerror| | respectively electronics. Usually they
be customized. windows. occeurs. are not recorded.
/ / |
ools 7. H
Show Clear Dizplay Cmd 48 Record Off Tabs Infa
File Home | Coy fands | Trigger.Filter | Service Slave | I Options | Test/Diagnostic |
App Master Behavior —Master Timing Adjust Monitari
" Color Set1 [~ Topmost Num Retries: I 2 vl Additional 5TO: |0 ms | | [T Record Jabber Octets
i Color Set 2 Retry if Busy [ Carnier Off Delay: |0 ms
% User Colors Edit Colars [~ Short Address On Add Gap Time: |0 ms
~
211= -
13- OSLACEE|Cmd72 | 421 0100000900H  |f this is checked, the |2 | Some timing values may be
master automatically R: modified. ——
repeats a service if busy o-sezge=
or delayed response is | ¢ 37 02 31 41 51 =2 |DD|
ik reported.
14:559555>L5TXP|Cmd45| 0| | b=
125<
15: 0>LACKP|Cmd45 111 0000000331 [0] 00000001 [1]:00000010 [2]:00000100 [3]:00001000
[4]1:00010000 [5]1:00100000 [&]:00000000 [7]1:00000000
[3]1:-00000001 |C3]
225< L
£ >
i) COM 2 | Monitoring active | Master and Slave Emulator active | Switch record off to stop monitorin &8 0000015 T: &)

Test/Diagnostic Menu

Any byte stream may be
sent by the master for test
purposes.

—

In some cases a receiver may cause problems
if jabber octets appear at the connection. The
user can test this by making the master to
send those ghost bytes.

| A simple quality analysis is provided.

Q?r!,;l_‘ Hart To
Slave Clear Display
File | Home Commands | Trigger.Fiter | Services | Options | m |
Functions \ Additional Options
[Send Ay Frame | | Edit Frame | Send Jabber Octet [~ Value: [255  Hart Enabled 7

| esl £

Error [

Use Fixed Unique D [~ ID::FD IﬂxFD Iﬂ:m |n:nz Iﬂxﬂﬂ
\

WV Hex

Atindex: [i0

Record Off Hide Tal

Diagnostic

Frames Received: |3-G
Mumber of Errors: Iﬂl
Total Quality (%): IH]'D,G'D

LACKE|Cmd 312 :1€,13075 mA/PV 1: 17,58 igute/PV 2: 1553,828 mbar/PV 3: 24,33792 mm A
LACKF|Cmd 3 17,70551 mR/EV 1: 18,5595 1) : 1558,828 mbar/PV 3: 24,33752 mmy

2 :18,TEEE2 mA/PV l: 18,23517 5§33 mbar/PV 3: 24,33792 mmy

! ; :1§r33§25$§“111 f’;ig“lli-"m For the testing of (e.g.) multiplexer applications

: 120, €41 FBV 1: 20,4005€ l/mi

- 1531121 mA/DV 1- 18,5695 l/mi it could be helpful to use the unique identifier
LACKD|Cmd 3 :18,4348¢ mA/DV 1: 18,0217% 1/mf directly. -
< >
@ COM 2 | Menitoring active | Master and Slave Emulator active | Switch record off to step monitoring. & 0000075 T @

The above display was generated by using the filter for the

suppression of requests.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions

37



Automation
O" Embedded Solutions HartTools 7.6

Additional Features

Store in Xml and Html Format
| %1, Speichem unter wof If you select the file
extension .frax, the frames

€ > v~ 4 _ = 02-.. » Debug ~ &) Debug durchsuchen 2 will be strored in xml
| Organisieren = MNeuer Ordner = - o format.
I Dieser PC Name " indernge Alternatively you may also
—_ Bibliotheken | Documentation s20a00021 Choose an html format as a
= Backup (X) T 22052022 documentation of the
= DVD-RW-Laufwerk (D) @Test‘l.frax 01.06.2023 debug SeSSion.
o USB-Laufwerk (H:) L) Test2.frax 01.06.2023
— USB-Laufwerk (1) &) Testafrax moszzz An example of an xml
= USB-Laufwerk () output is shown on the
Dateiname: | Test frax 7] following page.
Dateityp:  Xml Files(*.frax) ~
A Ordner ausblenden Speichern Abbrechen

Xml Format Example

<?xml version="1.8"2>
<FrameAlystRecords>
<Header>
<FrameAlystVersion>7.6.8</FrameAlystVersion>
<SessionInfo>Frameflyst 7.6 for Hart</SessionInfo>
<NumberOfFrames >8</NumberOfFrames >
<TimeAndDate>81.06.2823 16:51:41</TimeAndDate >
< /Header>»
<Frames>
<Frame Number="@@02@">
<RawData>
<Properties StartTime="442846195" EndTime="442846324" NumberOfBytes="14" WasGapTimeOut="False" ClientTxFlag="True" IsValidFrame
<FrameBytes»255, 255, 255,255,255,138,189,253,1,2,3,8,0,194</FrameBytes>
<fRawData>
<AddInfo>
<HeadingComment>Script: CMD(8) / NO DATA</HeadingComment>
< /AddInfo>
</Frame>
<Frame Number="80081">
<RawData>
<Properties StartTime="442846298" EndTime="442846626" NumberOfBytes="38" WasGapTimeOut="False" ClientTxFlag="False" IsValidFrar
<FrameBytes»255,255,255,255,255,134,189,253,1,2,3,6,24,08,8,254,253,253,5,7,1,1,1,8,1,2,3,6,4,0,08,2,0,38,8,38,131,168</FrameByte
< /RawData>
<AddInfo />
</Frame>
<Frame Number="008082">
<RawData>
<Properties StartTime="442846718" EndTime="442847@48" NumberOfBytes="35" WasGapTimeOut="False"” ClientTxFlag="True" IsValidFrame¢
<FrameBytes»255,255,255,255,255,13@,189,253,1,2,3,18,21,48,149,49,211,8,32,24,195,215,130,8,32,138,8,32,138,8,32,1,6,123,112</f
</RawData>
<AddInfo>
<HeadingComment>Script: CMD(18) / DATA(Pasc6;LIT148 ;Pascl2;FLOW 31;6;123)</HeadingComment>
</AddInfo>
</Frame>
</Frames>
</FrameAlystRecords>

Regarding Html format you may either store the records in an
Html file or click *html’ in the print functions. The print function
for *html’ is opening your standard browser directly to display
the frames.

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 38



Automation
or’ Embedded Solutions HartTools 7.6

Html Output Example

@ FrameAlyst 7.6 for Hart[Data:s.html] X + ' = | Y

G @ O filey//C/_ Work/01-HartTools76/02-Sc. 77 & &) |

HartTools Version: 7.6.0.0 !
Date: 01.06.2023 / Time: 17:11 |

Script: CMD(@) / NO DATA
--->LSTXP|Cmd @] @
No Data
129 |C2|

@>LACKP|Cmd @|24| o|B8e
Data: FE FD FD @5 @7 81 81 81 85 81 82 @3 @c @4 @0 @2 B2 88 26 80 26 8
328> |A8|

Script: CMD(18) / DATA(Pasc6;LIT148 ;Pascl2;FLOW ;1;6;123)
92>L5TXP|Cmd18| 21
Data: 3@ 95 31 D3 @8 28 18 C3 D7 82 @8 28 82 @38 28 32 88 26 81 85 7B
322> 78|

@>LACKP|Cmd13|26| o|4e
Data: 3@ 95 31 D3 @8 2@ 18 (3 D7 B2 @3 20 82 @8 20 82 @8 20 @1 @6 7B O
331> |3B|

Script: CMD(3) / NO DATA
92>L5TXP|Cmd 3| @
No Data
129> |C1]

@>LACKP|Cmd 3|26| @40
Data: 41 7@ E3 AA 11 41 87 47 25 @8 44 53 95 DA 31 41 C2 D7 1E 2@ 41 4

345> 92|

Script: CMD(35) / DATA(32;Float32;108.8;Float32;8.0)
91>L5TXP|Cmd35| 9
Data: 28 42 C8 88 B8 88 88 66 a8
212> 42|

@>LACKP|Cmd35 | 26| 18| 4@ |
Data: 11 41 AP @9 @0 41 20 6P @0 00 0O 00 @0 00 00 0O DG 00 00 08 0@ Ol
339> | 3|

End of Records Qutput

Services Menu
Services are some more complex functions as only sending a

command.
P, FrameAlyst 7.6 for Hart = O X
Show Slave Clear Display Run Script Record Off Hide Tabs Infa |
File | Home | Commands | Trigger/Filter ||Senrices | Slave | Options | Test/Diagnostic |
Management Standard Seript
[Toggle BurstMode | [EditSetlongTag | | | [@®  DeviceData|| |[Load | Neme: @ |
[SetFoll Address | [Activate Hart67 | | |[SetTagDsciDate || |[Save | [Name
Search Device [ set Range || [[Run ] |Edit | |
——=>85TEP|Cmd 0| 0| 1821
83«
0>SACKP|Cmd 0]24| 0|40|FE FD FD 05 07 0L 01 Ol 08 Ol 02 03 06 04 00 0L 02
281<
4274=LSTEDP | Cmdl05| 1| 0L RAF|
138<
0>LACKP|Cmdl09| 2|€4140] RS
133<
) COM 7 | Monitoring active | Master and Slave Emulator active | Switc 48/ 0000004 T €8

The services are only working if the FrameAlyst is using the
master emulation.

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 39



tnutomotion
o,’ Embedded Solutions

HartTools 7.6

Toggle Burst Mode

Set Burst Mode >

Current Burst Mode: IOFF

New Burst Mode: ION vl Write |
|’Write Resp

Cance | Read | Exit |

Reading Burst Mode Done!

This service is handling command 109.

Set Poll Address

Set Slave Address *

Current Address: IDﬂ
New Address: IA_DD 'l Set |

|'Write Rezponse

Set slave poll address is handling command 6. Note: Hart5 is
only supporting addresses 0..15 while Hart 7 has a range of
0..63.

Search Device

Searching for a HART Device x
Trying Address: I 1}
Cance I Try Again | Exit

Found Device at Address: 0 |

Edit/Set Long Tag

Set Long Tag X

Tag Name:l]:.ong tag name

|CanDe|||Ser|:I||OK|

The long tag is an iso latin-1 string of a length of a maximum of

32 characters. If it contains less than 32 characters it is
terminated by 0x00.

Activate Hart 6/7
There is no form provided which is used to realize this mean.

The service is using commands 7 and 6 to signal the slave
device that a Hart 6/7 host is connected.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions

40



Bo "t Embedded Solutions HartTools 7.6
Handle Device Data
9% Device Data Handling X
Fie/info Home | Device Variable | Status |
— General Configurati
Short Tag: [SLVTAG  Descriptor: [MY MEASUREMENT Day: [T =]  Month: fln +|
Long Tag: Slave Long Tag Name Year. 2023 ~ |
Message: [\ MAINTENANCE MESSAGE Communication Address: [A-00_~ |
- Range
LowerValue: [10 UpperValue: 20 Range Unit: [/mnute +|
Damping: [ Wi-Protection: [Dissbled Onalarm: [Hold
—Sensor Information
MinValue: [0 MaxValue: [100 MinSpan: [5
Unit Jmnde
Dynamic Data
Primary Variable: Secondary Variable: Tertiary/Quaternary Variable:
[ 15326 ma [ 166059 Uminute | 1585383 mbar [ 2856058 mm
[ 15326 % I™ DeviceinBurstMode | Detailed Status Avail | 16,10434 °C
I Dynamic Update Send Data | Read Data | Exit
Reading data completed,
This service is reading the main information from a device.
Set Tag, Descriptor and Date
Set Device Information X
TagName: [SLVTAG
Description: [MY MEASUREMENT
o
Month: [6 |
Year 2023+ Wit |
Cancel | Read | Bat |
Reading Completed! [ TITTTLL]]
This application is setting the short tag, the descriptor and the
date.
Set Range
Write Primary Variable Range X

Upper Value (20 m&): IZ{H] liminute
Lower Value (4 mA): I‘H].D liminute

‘write Response

I— \irite |

Cancel Fead | Exit |
Reading Completed! INNREERENI

The service is trying to write the upper and the lower range
value of the primary variable of a device.

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions



Automation
or’ Embedded Solutions HartTools 7.6

Edit and Run Scripts

Edit Command Sequence Script

Name: |MyScript Run

Ho | CHDl Data Syntax |

1 1]

2 1a Pasc&;LIT140 ;Pascl2;FLOW Fl;€;123
k] S

4 32;Float32;100.0;Float32;0.0

Use data syntax editor.

The example above is sending the commands 0, 18, 3 and 35.

Fan, Hart Tools 7.6 — m] X

Show Slave Clear Display Run Script Record Off Show Tabs Info

Script: CMD(0) / NO DATA
-—->LSTXP|Cmd 0] 0] 1c2)
129<
0>LACKP|Cmd 0]24] 0|20|FE FD FD 05 07 01 01 0L 02 0L 02 02 06 04 00 00 02 00 2& 00
317<
Script: CMD(18) / DATR(Pascé;LIT140 ;Dascl2;FLOW Fl;6;123)
51>LSTHP|Cmdl8 | 21| |20 85 31 D2 02 20 12 C2 D7 22 02 20 22 08 20 82 08 20 Ol 0O¢
321<
0>LACKP|Cmdl8|2€| 0140130 95 21 D2 02 20 18 C2 D7 82 08 20 22 02 20 22 08 20 0L 06
331=<
Script: CMD(3) / NO DATA
51>LSTHP|Cmd 3| 0O =N
130<
0>LACKP|Cmd 3|2€| 0140|140 SA OR 46 11 41 23 23 3¢ 02 45 04 D7 DE 31 42 OC A0 71 20
341=
Script: CMD(35) / DATA(32;Float32;100.0;Float32;0.0)
52>LSTHP| Cmd35| 5| |20 42 C2 00 00 00 00 00 00]4Z]
211=<
0>LACKP|Cmd35 (261840111 41 A0 00 00 41 20 00 00 00 00 00 00 00 00 00 00 00 00 0O
343=<

The script may be stored in a file and be loaded from a file. The
active script is always stored in the settings of the software and
automatically reloaded after the start of FrameAlyst.

If command 255 is specified in the script, the data will be sent
as is not formatted as a Hart frame.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 42



Automation
or’ Embedded Solutions HartTools 7.6

Decoding Data in a Frame

s, Hart Tools 7.6
Show Slave Clear Display Cmd 2 Record Off Hide Tabs Infa
Fle | Home |[Commands | Trioger/Fiter | Senvices | Save | Options | «|»]
Repeat — 1 [ Send Command
I” Cyclic Cmd0 |[Cmd2 |[cmdz  ~| |Cmd38 |[Cmd36

[cmd2 [emd1 | [Usercmd | | EditUserCmd | [Cmd42 | [omd37

= O x

[cmd3 | [cmd18 | |Editcmd1s | [cmd4s |

327<
4102>LSTEP |Cmd Z| O] 1Ca|
125=

0>LACEP|Cmd 2|10] 0(40(41 32 44 32 42 3% 0AAZ (52| |

212<

21 COM 7 | Monitoring active | Master and Slave Emulat €8 0000012 T 48
By using the right mouse button a context menu will be
displayed.

Integer

Float

HartUnit

PackedASCII

Text

Binary

Copy to AnyFrame
Select the decoding of your choice and the value will be
displayed in a tool tip.

Copy to SendAnyFrame

i1, FrameAlyst 7.6 for Hart = O X

Show Slave Clear Display Cmdl Short Record Off Show Tabs Info

S5TEP|Cmd 0| 0] 182

) COM 7| Monitoring active | Master and Slave Emulator active | Switch record off to stop mor €8 0000002 T )
Select the whole frame, click the right mouse button and click
'Copy to AnyFrame' in the context menu.
The data will be copied to this function and the edit any frame
window will open.

Send an Individually Specified Frame X

Fram:lbx00:0x24 ;O0x00; 02007 0xEe; Oxnsdy OxEdy 005 0x07; 001 0x0L; 0x0Ly 0x02;

It is also possible to copy only a part of the data.

%us, FrameAlyst 7.6 for Hart = O X

Show Slave Clear Display ~ Cmd0 Short Record Of  Show Tabs Info

S5TEP|Cmd 0| 0] 122]
Ol Ol 02 01 02 02 08 04 00 00 02 00 2Z& 00 Z& 23|EB|

21 COM 7 | Monitoring active | Master and Slave Emulator active | Switch record off to stop ror €8 0000002 T @&

It will appear as is in the any frame editing function.
X

Send an Individually Specified Frame

Fram:|0x00r0x24:0x00 ;O0x00;0xfey 0xfd; Oxfdr 0x05; 0x07;0x01

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions

43



Bo "t Embedded Solutions

HartTools 7.6

Copy Bytes to the Clipboard

The same functionality as shown allows also to copy data bytes
to the Windows clipboard by selecting 'Bytes to ClipBoard' in the
context menu.

Editing Data Syntax
Data syntax allows to easily specify a stream of bytes to be
send.

Prefix Type Example Comment
None Decimal or 24; 0x18 The software will determine the
Hexadecimal required length

dec8, decl6,
dec24, dec32

Decimal number

decl16; 1011

bin8, bin16,
bin24, bin32

Binary number

bin8; 10001101

hex8, hex 16,
hex24, hex32

Hexadecimal
number

hex16; fal3

float32

Single precision

float32; 1.34

float64

Double precision

float64; 1.11e+48

pcab, pcal2,
pca24

Packed ascii

pca6;LITT1400 pcab = 8 characters
pcal2 = 16 characters

pca24 = 32 characters

str8, strl6,
str32

Fixed length string

str32; my-device Resulting byte array will be filled

by Os

All items the prefix and the data lement are separated by a
colon ';'.

Data Syntax

Pasce;LIT140;Fascli; TEMEERATURE;15;12;113
32;Float3Z;150.0;Float32;0.0

str3Z;3Z characters isc latin 1

A few examples are shown above

However, it could be much easier to do this by the data syntax
editor.
When editing a command that requires data to be specified

Send an Individually Specified Burst Command [ % |

Response Code 1 o] Response Code 2: a

Data: |:'1:at;22 .0;253;float;1.0;254;float;2.0

the data syntax editor will open on a click of the edit button.

Command: 3

Cancel

Edit Data Syntax Byte Stream | 28 |
No Item Data
EON ricetzz xlzzoo Clear Al
2 Intd x| 253
Delete
3  Float3z >l1.0
4 Inta x| z54 Insert
5 Float3z =lz.0
Append

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 44



Bo s t g"‘gs‘g‘ﬂgs'!g'g HartTools 7.6

Displaying the Slave Emulation

If the slave emulation is active, FrameAlyst provides a callback
to the slave simulation which is used by this software for
printing text with the printf function in the C libraries.

s, Hart Tools 7.6 = O X

Hide Slave Clear Display ot Set Record Off Show Tabs Infa

The slave display may be
hidden..

Tag Hame:

Long Tag Name 3 Tag Hame'

21 COM 7 | Menitoring active | Master and Slave Emulator active | Switch & 0000000 T: &)

Handling of Erroneous Frames

ta, FrameAlyst 7.6 for Hart = O x
Show Slave Clear Display Any Frame Record Off Show Tabs Infa

SRCEF|FF FF FF FF FF|0E]|30 ICmd O|24| 0|00|FE FD FD 05 07 01 01 01 03 01 02 03 0€ 04 00 00 02 00 2& 00 2& 83|E8|

SARCEP|FF FF FF FF FF|0€|&80 |Cmd ©|24| O|00|FE FD FD 05 07 01 01 01 08 01 02 02 0€ 04 00 00 02 00 2€ 00 2€ 83|E7I

Checksum Error!

SRCEF|FF FF FF FF FF|0&]|30 ICmd O|24| O0|00|FE FD FD 05 07 01 01 01 08 01 02 03 0€ 04 00 00 02 00 2Z€& 00 2& 83|

Missing checksum!

SRCEF|FF FF FF FF FF|0&]| 20 ICmd O|24| 0|00|2FE FD FD 05 07 01 01 O1 02 01 02 03 08 04 00 00 0OZ 00 2Z& 00 2&

Too few data bytes!

SRCEFP|FF FF FF FF FF|0&|20 |Cmd O]

Missing response 1!

SACEP|FF FF FF FF FF|0&|&20 |
Missing command!

SRCES|FF FF FF FF FF|0&|

Mo address byte!

| ?FF FF FF FF FF

Mo preamble detected

&) COM 7 | Monitoring active | Master and Slave Emulator active | Switch recerd off to stop monitoring. @ 000oo08 T &

Setting Custom Colors

Appearance 1 The tab Options is providing User Colors.

~ Light Colors I T + . ) )
e The user colors can be edited by clicking

" Dark Colors
the button 'Edit Colors'.
* User Colors -
The color editing form is shown in the
following.

< for FrameAlyst Displays X

Background: l:l |:I Jabber Octets . _I

Primary Master Delimiter: . _I Data Garbage: . _I
‘Secondary Master Delimiter: . _I Error Indications: . _I
Valid Data: . _I Decoded Response Codes . _I

Invalid Data: . _I Selected Data Background . _I

Frame Header: . _I Trigger Forecolor |:| _I

Timing . _I Trigger Backcolor: l:l _I

Line Numbers: . _I Trigger Selection l:l _I
~Slave Text Display Status Display —————————————————
Backcaolor: . _I Backcolor not Recording l:l _I

Textcolor: I:I _I Backeolor Recording l:l _I

r~Functional Buttons

Hot Functions: I:I _I Set Default
Apply Cancel oK

Menitor

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 45



Automation
or’ Embedded Solutions HartTools 7.6

Frame Display Examples

B, Hart Tools 7.6 — ] b4

Show Slave Clear Display Cmd 18 Record Off Hide Tabs Info
File | Home ‘ Commands Trigger/Fitter | Services | Slave | Options | Test/Diagnostic ‘

Op Ci i Hart Behavior View
¥ Record Com Port:  COM7 - Preambles: m ¥ Preambles ¥ Frame Numbers
Poll Address:  A_0D . Link Role: m ¥ Address | Decoded Data
Baudrate: m ¥ Master [ Slave ¥ Timing ¥ Status Details
l: --->SSTEP|FF FF FF FF FF|02]80 ICmd O] 0] 1821
2: séiSBCKP“?F FF FF FF FF|0€180 |Cmd O]24] 0]00100000|254/HMan253/Dev253/5 PAs/Hart7?/Txl/S5wl/Hwl/FLOOO01000/ID 0x01 0x02 0x03

MinDPArsp: €/HaxNumlVs:4/CEgChCnt : 0/ExtDevStat: 00000010
ManuID:-0:x002€/LabDistID:0026/Profile-131|C8|

283< Cold Start
3:32304>LSTXP|FF FF FF FF FF|8Z|ED FD 01 02 03 |Cmd 2| 0] 1Cal
130=
G 0=LACEP|FF FF FF FF FF|8€|BD FD 01 02 03|Cmd 2|190| O]00000000|15,03367 m&/93,96046 %| 76|
187<
5: 3221>LSTHP|FF FF FF FF FF|82|BD FD 01 02 03|Cmd 3| 0| IC1|
1259<
L= 0>LACEFP|FF FF FF FF FF|8€|BD FD 01 02 03|Cmd 3[2€| 0100000000 |Curr:11,7013 mA/PV 1: 14,05503 l/minute/PV 2: 2033,084 mbar/PV 3: 45,5803 mm
343<
7:27254>LSTHP|FF FF FF FF FF|22|BD FD 01 02 03|Cmd42| 0] IF2|
120«
a: 0>LACEP|FF FF FF FF FF|28€|BD FD 01 02 03|Cmd48|11| 0[000000001[0]:00000001 [1]1:-00000010 [2]:00000100 [3]1:00001000

[4]:00010000 [S5]:=00100000 [€]:00000000 [7]:00000000
[8]1:00000001 |C3]|

205<
S: 52€e>LSTHP|FF FF FF FF FF|82|ED FD 01 02 03 |Cmd42| 0] 1E2|
130«
10: 0>LACEP|FF FF FF FF FFIS8&|BD FD 01 02 03|Cmd42| 2164100000000 |No Datal|RE|
1l41< Command Not Implemented
11: €060=LSTXP|FF FF FF FF FF|82|BD FD 0l 02 03|CmdlB8|21] |ITag:LIT140 /Descr:FLOW /Date:1.€.2023|70]
221=<
1l 0>LACEP|FF FF FF FF FF|2€|BD FD 01 02 03|Cmdl2|2€| 0]01000000|Tag:LIT140 /Descr:FLOW /Date:1.€.2023|3B|
347<
@) COM 7| Monitoring active | Master and Slave Emulator active | Switch record off to stop menitoring. ) ooo0012 T

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 46



BO"' Embedded Solutions HartTools 7.6

HartDLL (Client + OSAL)

The Hart Driver DLL is implementing the Hart communication
protocol by resolving the real time requirements.

The DLL is not (!) using any framework like MFC. It does not
use the Windows Registry and is not depending on any other
DLL except the standard Windows system DLLs. The DLL itself is
using standard Windows API calls and is therefore compatible to
all Versions of Windows with the 32 bit and 64 bit API.

The implementation of the Hart Protocol does not contain any
restriction to frame lengths like in Hart 5.x (e.g.). Therefore the
all communication functions can be used for devices supporting
Hart 5, Hart 6 or Hart 7.

Before using the communication the application software has to
register for a com port of the PC. This can be any com port from
1 to 255 including virtual com ports as they are used for USB
hart modems.

Distribution of Applications

The only thing you have to provide with your application is a
copy of the DLL (BaHartDrv74.dIl). The best way is to provide a
copy of the 32 bit DLL (x86) as well as a copy of the 64 bit DLL
(x64). The files should be copied to the Windows system paths
for 32 and 64 bit DLLs.

Note: Be sure that the first call of your application is a call of
the validation function of the DLL (BHDrv_ValidateLicense)
passing a valid license code and the correct user name to the
DLL.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 47



Bo "t Embedded Solutions

HartTools 7.6

Functions

All functions of the DLL are thread safe. The interface for the

functions calls is the same as the WINAPI functions. Thus the
DLL may be used by all applications which support calls to the
WINAPI functions.

Declaration

Description

Operation

void BHDrv_ValidateLicense
(const char* userName,
const char* license)

The first call into the DLL should be a call to this function passing the correct
license key and the user name to the software. The user name and the licensee
code is provided by the User License Certificate.

signed int BHDrv_OpenChannel
(unsigned short comPort)

The function allocates the selected com port if possible and starts its own working
thread for accessing Hart services. The value which is returned is a handle
(channel) which has to be passed to all functions which are requesting a service.
If it was not possible to open the com port the function is returning
INVALD_DRV_HANDLE to indicate the error. The com port number is limited
to the range of 1 .. 255.

void BHDrv_CloseChannel
(signed int channel)

It is required to call this function at least when the application is terminating.

void BHDrv_GetConfiguration
(signed int channel,
T strConfiguration* pstrConfig)

The function copies the configuration data to a data structure provided by the
caller.

void BHDrv_SetConfiguration
(signed int channel,
T strConfiguration* pstrConfig)

The function is setting all details required for the configuration. The data is passed
in a structure provided by the caller.

void BHDrv_GetRunTimeInfo
(signed int channel,

T_strRunTimeInfo* pstrRunTimeInfo)

Return some information about the communication channel (e.g. if the use of a
FIFO at the UART was detected.

void BHDrv_RegisterEventCallback

(signed int channel,

void (__stdcallx*
HandleServiceEvent)
(signed int channel,
unsigned short usEvent,
signed int service,
unsigned int data))

Register a function which is called when any requested service is completed. The
service handle of the service is passed to the called CB function.
HandleServiceEvent is the pointer to the handling function which is provided by
the user.

The parameter usEvent may have the values NONE, CONFIRMATION or
BURST_INDICATION. The parameter channel is passed to the application to
allow the support of more than one communication channel in one callback.

void BHDrv_ClearEventCallback
(signed int channel)

Deletes a previously registered callback. After a call of this function no more
callbacks to HandleServiceEvent will occur.

Connection Services

unsigned int BHDrv_ConnectByAddr

(signed int channel,
unsigned char address,
unsigned char gos,
unsigned char numRetries)

Use command 0 with short address to get the connection information.

channel | The handle which was returned by the OpenChannel function

address|0 .. 63

qos|DRV_WAIT or DRV_NO_WAIT

numRetries|0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

unsigned int BHDrv_ConnectByUniqueID

(signed int channel,
unsigned char * dataRef,
unsigned char gos,
unsigned char numRetries)

Use command 0 with short address to get the connection information.

channel | The handle which was returned by the OpenChannel function

dataRef |Pointer to a five byte array with the unique identifier

qos|DRV_WAIT or DRV_NO_WAIT

numRetries|0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

unsigned int BHDrv_ConnectByShortTag

(unsigned int channel,
unsigned char * dataRef,
unsigned char gos,
unsigned char numRetries)

Use command 0 with short address to get the connection information.

channel | The handle which was returned by the OpenChannel function

dataRef |Pointer to the byte array of a length of 6 packed ASCII bytes

qos|DRV_WAIT or DRV_NO_WAIT

numRetries|0 .. 10

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions

48




Bo "t Embedded Solutions

HartTools 7.6

Declaration

Description

unsigned int BHDrv_ConnectByLongTag

Use command 0 with short address to get the connection information.

channel | The handle which was returned by the OpenChannel function

dataRef |Pointer to the 32 byte ISO Latin 1 string with the long tag

(unsigned int channel,
unsigned char* dataRef,
unsigned char ucQos,
unsigned char numRetries)

name

qos

DRV_WAIT or DRV_NO_WAIT

numRetries

0..10

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

void BHDrv_FetchConnection
(signed int service,
T strConnection* pstrConnData)

Fills a structure provided by the caller with the connection information. hSrv is the
service handle which was returned by one of the connection functions.

Note: After a call of this function the driver is deleting the service. hSrv is no
longer valid after calling FetchConnection once.

Communication Services

unsigned char BHDrv_IsSendClear
(signed int channel)

The function returns B_TRUE, if no more service is pending.

signed int BHDrv_SendAnyData
(signed int channel,
unsigned char* dataRef,
unsigned char datalLen)

Send any octet stream via the connected com port.

channel | The handle which was returned by the OpenChannel function

dataRef [Pointer to a native array of bytes

dataLen [Number of bytes to be sent

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.
The function is provided for debugging purposes allowing to send any stream of

data through the serial interface.
Note: It is very important to acknowledge this service by calling the function

FetchConfirmation
deleted.

after completion. Only with this call the service handle is

signed int BHDrv_DoCommand

(signed int channel,
unsigned char command,
unsigned char gos,

Send a command in

the range 0..255.

channel

The handle which was returned by the OpenChannel function

command

Hart command (0..255) to be sent with the request

unsigned char gos,

unsigned char* dataRef, gos|DRV_WAIT or DRV_NO_WAIT
unsigned char datalen, dataRef|Poi ive b hich i load d
unsigned long appKey, ataRef |Pointer to a native byte array which is sent as payload data
unsigned char* bytesUniqueID) datalen |Length of the byte array
appKey |Any value. The value which the user is setting here is returned
by the confirmation as is.
bytesUniquelD |Five byte unique identifier of the addressed device
The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.
Do command can be used for the support of most of the Hart services including all
user specific commands.
Note: It is not(!) recommended to pass a function pointer through dwAppKey.
This will cause problems with 64 bit applications!
signed int BHDrv_DoExtCmd Send a command in the range 0..65535.
. channel | The handle which was returned by the OpenChannel function
(signed int channel, hannel [The handle which d by the OpenChannel functi
unsigned short command,

command |Extended Hart command (0..65535) to be sent with the request

unsigned char* dataRef,
unsigned char datalen,
unsigned long appKey,
unsigned char* bytesUniquelD)

qos

DRV_WAIT or DRV_NO_WAIT

dataRaf

Pointer to a native byte array which is sent as payload data

datalen

Length of the byte array

appKey

Any value. The value which the user is setting here is returned
by the confirmation as is.

bytesUniquelD

Five byte unique identifier of the addressed device

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

The extended command in Hart 6/7 is an extension which is using the byte
command 31 to carry a larger command within the data area. Therefore this
function was introduced more or less for the convenience of the HartDLL user.
The function is automatically taking care of the correct usage of command 31.
Note: It is not(!) recommended to pass a function pointer through dwAppKey.

This will cause problems with 64 bit applications!

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 49



BO"t Embedded Solutions HartTools 7.6

Declaration Description

signed int BHDrv_DoBurstCommand Send a burst command (cyclic service) in the range of 0..255.

(51gl?ed int channel, channel | The handle which was returned by the OpenChannel function
unsigned char command, -
unsigned char gos, ucCommand |Hart command (0..255) to be sent with the request
unsigned char* dataRef, ucQOS |DRV_WAIT or DRV_NO_WAIT
unsigned char datalLen, ReaData|Poi ive b hich i load d
unsigned long appKey, pucRegData |Pointer to a native byte array which is sent as payload data
unsigned char¥* bytesUniquelD, ucRegDataLen |Length of the byte array
unsigned char invertMaster)

dwAppKey |Any value. The value which the user is setting here is returned
by the confirmation as is.

pucUniquelD |Five byte unique identifier of the addressed device
invertMaster |0: do nothing, !=0: primary to secondary and visa versa

The function returns a service handle if successful or INVALID_SRV_HANDLE
if there was an error.

To send a burst command may be helpful for device developers or for debugging a
network.

Note: Even if the burst command is only sent and no response is received, it is
very important to acknowledge this service by calling the function
FetchConfirmation after completion. Only with this call the service handle is
deleted.

unsigned char BHDrv_ IsServiceCompleted |Returns T_TRUE if the service (service) was completed.
(signed int service)

void BHDrv_FetchConfirmation Fills a structure provided by the caller with the service results information such as
(unsigned int service, the response codes and the response data (if any).
T strConfirmation* pstrConfData)

Cyclic Data Services

void BHDrv_CycSrvStart The function is enabling the reception of incoming burst messages.

(signed int channel) Note: If this function is called eventual existing messages in the drivers queue are
deleted, thus the reception of Hart burst messages starts with an empty queue.
However, before BHDrv_CycSrcStart is called incoming burst messages are

discarded.
void BHDrv_CycSrvStop After the call of this function the reception of burst messages is halted. Messages
(signed int channel) already in the queue may be read by BHDrv_CycSrvGetData.
unsigned char BHDrv_CycSrvGetData Read cyclic data from the queue in the HartDLL.
(signed int channel, The returned value indicates if cyclic data was fetched from the queue or not:
T_strCyclicData* pstrCycbhata) CYCDAT_OK or CYCDAT_NO_DATA.
void BHDrv_CycSrvRegisterCB For asynchronous reading of cyclic data a callback function may be registered at
(unsigned int channel, the DLL.
void A pointer to a user function is passed, which is called when cyclic data was
(__stdcall*  pfSubscribeCycData) received. The user function accepts the channel handle and a pointer to a structure
(T_strCyclicData* pstrCycData)) containing the received cyclic data.
void BHDrv_CycSrvUnregister After this function was called no more callbacks will be done.

(signed int channel)

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 50



Bo "t Embedded Solutions

HartTools 7.6

Declaration Description
Decoding
unsigned char BHDrv_PickInt8 Return the value of the byte in the byte array buffer pointed to by dataRef at the
(unsigned char offset, position offset.
unsigned char* dataRef)
unsigned short BHDrv_PickIntl6é Return the value of the integer 16 from the byte array buffer pointed to by dataRef
(unsigned char offset, at the position offset. Assume that the most significant byte is the first if endian is
unsigned char* dataRef, MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
unsigned long BHDrv_PickInt24 Return the value of the integer 24 from the byte array buffer pointed to by dtaRef
(unsigned char offset, at the position offset. Assume that the most significant byte is the first if endian is
unsigned char* dataRef, MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
unsigned long BHDrv_PickInt32 Return the value of the integer 32 from the byte array buffer pointed to by dataRef
(unsigned char offset, at the position offset. Assume that the most significant byte is the first if endian is
unsigned char* dataRef, MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
float BHDrv_PickFloat Return the value of the single precision IEEE754 number from the byte array
(unsigned char offset, buffer pointed to by dataRef at the position offset. Assume that the most
unsigned char* dataRef, significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
double BHDrv_PickDouble Return the value of the double precision IEEE754 number from the byte array
(unsigned char offset, buffer pointed to by dataRef at the position offset. Assume that the most
unsigned char* dataRef, significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
void BHDrv_PickPackedASCII Generate a string and copy it to the buffer pointed to by sb. The final string should
(unsigned char* sb, have the length stringLen. The packedASCII source is a set of bytes in the byte
unsigned char stringlen, array buffer pointed to by dataRef.
unsigned char offset, Note: The string length has to by a multiple of 4 while the number of
unsigned char* dataRef) packedASCII bytes is a multiple of 3.
void BHDrv_PickOctets Copy a number (numOctets) of bytes from the byte array buffer pointed to by
(unsigned char* dataDestination, dataSource to the user buffer pointed to by dataDestination.
unsigned char numOctets,
unsigned char offset,
unsigned char¥* dataSource)

void BHDrv_PickString
(unsigned char*

unsigned char stringlen,
unsigned char offset,
unsigned char* dataRef)

This function does the same as BHDrv_PickOctets.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 51



Bo "t Embedded Solutions

HartTools 7.6

Declaration Description
Encoding
void BHDrv_PutInt8 Insert an integer 8 into the byte array buffer pointed to by dataRef starting at the
(unsigned char data, position offset.
unsigned char offset,
unsigned char* dataRef)
void BHDrv_PutIntlé Insert an integer 16 into the byte array buffer pointed to by dataRef starting at the
(unsigned short data, position offset. Start with the most significant byte if endian is MSB_FIRST(0),
unsigned char offset, which is the Hart standard.
unsigned char* dataRef,
unsigned char endian)
void BHDrv_PutInt24 Insert an integer 24 into the byte array buffer pointed to by dataRef starting at the
(unsigned long data, position offset. Start with the most significant byte if endian is MSB_FIRST(0),
unsigned char offset, which is the Hart standard.
unsigned char* dataRef,
unsigned char endian)
void BHDrv_PutInt32 Insert an integer 32 into the byte array buffer pointed to by dataRef starting at the
(unsigned long data, position offset. Start with the most significant byte if endian is MSB_FIRST(0),
unsigned char offset, which is the Hart standard.
unsigned char* dataRef,
unsigned char endian)
void BHDrv_PutFloat Insert a single precision IEEE 754 float value into the byte array buffer pointed to
(float data, by dataRef starting at the position offset. Start with the most significant byte if
unsigned char offset, endian is MSB_FIRST(0), which is the Hart standard.
unsigned char* dataRef,
unsigned char endian)
void BHDrv_PutDouble Insert a double precision IEEE 754 float value into the byte array buffer pointed to
(double data, by dataRef starting at the position offset. Start with the most significant byte if
unsigned char offset, endian is MSB_FIRST(0), which is the Hart standard.
unsigned char* dataRef,
unsigned char endian)
void BHDrv_PutPackedASCII Insert a string of the length of sLen in packed ASCII format into the byte array
(unsigned char* sb, buffer pointed to by dataRef starting at the position offset.
unsigned char sLen,
unsigned char offset,
unsigned char* dataRef)
void BHDrv_PutOctets Copy a number of dataLen bytes into the byte array buffer pointed to by
(unsigned char* dataSource, dataDestination starting at the position offset.
unsigned char datalen,
unsigned char offset,
unsigned char* dataDestination)
void BHDrv_PutString This function does the same as BHDrv_PutOctets.
(unsigned char* sb,
unsigned char sLen,
unsigned char offset,
unsigned char* dataDestination)

Table 3: HartDLL, List of Functions

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions

52



BO"' Embedded Solutions HartTools 7.6

HartX (Client)

The .NET Component HartX is implementing the Hart
communication protocol by resolving all the real time
requirements and coding as well as decoding issues.

The implementation of the Hart Protocol does not contain any
restriction to frame lengths like in Hart 5.x (e.g.). Therefore the
all communication functions can be used for devices supporting
Hart 5, Hart 6 or Hart 7.

Before using the communication the component has to select a
com port of the PC. This can be any com port from 1 to 254
including virtual com ports as they are used for USB modems.

Distribution of Applications

The user has to provide a copy of the component DLL and the
driver DLL (BaHartX.dll and BaHartDrv76.dll). The best way is to
provide a copy of the 32 bit native DLLs (x86) as well as a copy
of the 64 bit native DLLs (x64). The files should be copied to the
Windows system paths for 32 and 64 bit DLLs.

Note: Be sure that the first call of your application is a call of
the validation function of the DLL (HartX.ValidateLicense)
passing a valid license code and the correct user name to the
component DLL (the assembly).

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 53



Bo "t Embedded Solutions HartTools 7.6

CHartX

Properties
Name ’Type ‘Acc ‘Description
Operation/Control
AddrMode enum R/W AM_ShortAddress(0), AM_LongAddress(1)

AM_ShortTag(2) -> packed ASCII(6), 8 characters
AM_LongTag(3) -> string, 32 characters)
ComPort byte 0: None

1-254: Com port number (com port in use when set)
255: Reserved, do not(!) use

AddrTagShort string Short tag name used for addressing. The string should have a length of 8 and should
contain only capital letters.

AddrTaglong string Long tag name used for addressing. The string should have a length of 32.

ComState enum CS_OFF(0): No connection, CS_ON(1): Connection to device

Note: If ComState is toggled from CS_OFF to CS_ON a command for retrieving the
unique identifier is executed. This activity is not(!) generating an event.

BaudRate BR_1200(0), BR_9600(1), BR_19200(2), BR_38400(3),
BR_57600(4), BR_115200(5)

NoPreambles byte Number of preambles to be sent with a request (typically 5, range 5 .. 20)

PollAddress Poll address used to get the unique ID (0..63)

NewPollAddress Poll address to be set in the slave using action ACT_WrPollAddr.

NumRetries Number of retries in case of error (0..255)

MasterRole enum The initial master role when starting communications
MR_PrimaryMaster(0), MR_SecondaryMaster(1)

RetryIfBusy Indicates if the control should retry as long as the device is responding with busy*:
OPT_No(0), OPT_Yes(1).

LastError RO Most recent error: ERR_Success(0), ERR_NoComPortSelected(1),

ERR_InvalidComPort(2), ERR_ComError(3),
ERR_NoDeviceResponse(4), ERR_SlaveAddressError(5),
ERR_UndefinedError(6), ERR_ServicelnvokationError(7),
ERR_LicenseError(8)

LastErrorText string Text for the LastError value

UseUniqueID bool R/W Indicates if the unique identifier shall be used directly as it was entered by the user.

UniqueID byte[] Array of 5 bytes for the unique identifier.

UniqueId0 byte Long address byte 1

UniqueIdl Long address byte 2

UniqueId2 Long address byte 3

UniqueId3 Long address byte 4

UniqueId4 Long address byte 5

HandleOfChannel int RO Handle of channel which was returned by the HartDLL. This is meant for debugging
purposes.

DatalLength byte Number of data bytes in the confirmation of a service. This can be used for debugging.

Responsel Response code for the command

CommandResponseText |[string Text for the response code 1.

Response2 byte Device status

DeviceStatusText string Text for the response code 2

Information

IsDeviceConnected bool RO Indicates whether the unique identifier could be read from the device.

IsValidComPort bool Indicates whether the selected com port could be opened successfully.

BusyCount int Returns the number of currently active aynchronous services. These are services which

had been started by DoCommand with the wait flag set to false.

! This could cause a very large delay, has to be handled with care.

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 54



Bo "t Embedded Solutions

HartTools 7.6

Name ’Type ‘Acc ‘Description

Simulation

SimPvEnabled bool R/W Sets or gets a flag indicating whether the simulation for the four PVs is active.

SimAmplitude float The simulation is running Pv values between 0.0 and 1.0. SimAmplitude is the factor
to multiply the internal values with.

Parameter Properties

These properties are used to get portions of data from the recently conducted command.

Command 0 (Read Unique ID)

Usually this command is automatically executed if the control is not yet ‘connected' to the device (unique identifier unknown).

pOODevice byte RO Device ID (8 bit)
p00DeviceNumber uint 3 byte unique device ID
pOOHardwRev byte Hardware revision

p00SoftwRev Software revision

p00VendorID Manufacturer/Vendor identifier
Command 1 (Read Primary Variable)

pOlPv float RO Value of process variable 1
p01PvUnit byte Unit code of process variable 1
p01PvUnitString string String for the unit of process variable 1
Command 2 (Read Current and Percentage)

pO02Current float RO Value of the current output [mA]
p02Percent Value of the percentage 0..100 %
Command 3 (Read dynamic Variables)

pO0lPv float RO Value of process variable 1
pO0lPvUnit byte Unit code of process variable 1
pO01PvUnitString string String for the unit of process variable 1
p02Pv float Value of process variable 2
p02PvUnit byte Unit code of process variable 2
pO02PvUnitString string String for the unit of process variable 2
pO03Pv float Value of process variable 3
pO03PvUnit byte Unit code of process variable 3
pO03PvUnitString string String for the unit of process variable 3
pO04Pv float Value of process variable 4
p04PvUnit byte Unit code of process variable 4
p04PvUnitString string String for the unit of process variable 4
Command 12 (Read Message)

pl2Message |string |R/W |Hart message, the string should have a length of 32.
Command 13 (Read Tag, Descriptor, Date)

pl3DateDay byte R/W Day of month 1..31

pl3DataMonth Month of the year 1..12
pl3DateYear Year as offset to 1900
pl3Descriptor string String of 16 characters for the description
pl3TagName string String of 8 characters for the short tag
Command 14 (Read Transducer Information)

pl4LoSensLimit float RO Lower sensor limit

pl4MinSpan Minimum span

pl4SensLimUnit byte Unit code for the sensor information (values)
pl4SensSerNum uint 24 bit sensor serial number
pl4UpSensLimit float Upper sensor limit

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 55



BO"t Embedded Solutions HartTools 7.6

Name ’Type |Acc |Description
Command 15 (Read Device Information)
pl5AlmSelCode byte RO Alarm selection code
pl5LabDistCode Label distributor code
pl5LoRange float Lower range value
pl5RangeUnit byte Unit code for the range values
pl5UpRange float Upper range value
pl5WrProtCode byte Write protection

0: None

>0: Write protected
pl5XferFuncCode Transfer function code

Command 20 (Read Long Tag Name)

p20TagNameLong |string |R/W |The long tag name, the string should have a length of 32
X-Properties (Any Command)
xReqLen byte R/W Defines the length of the request data buffer
xOffset Defines the offset into the buffer for coding and decoding
xOffset (e.g. 3)ﬁ
Dataarea [CIT T T T T T T T T T 1[]
xInt8 1

xInt16 1]

xInt24 T 11

xInt32 T T T 1]

XFloat T T T 1]

xPacked_ASCIICT_TT_T T 4charin 24 Bit
xStringC T T T T T T 1

xStringlLen Defines the length of a string for coding and decoding
xPackedASCLen Defines the length of a packed ascii string
xHexDataDump string |RO Returns a string with the hex dump of the buffer with a length of xReqlLen
xInt8 byte R/W Sets or gets an 8 bit integer value in/from the buffer
xIntl6 ushort Sets or gets an 16 bit integer value in/from the buffer
xInt24 uint Sets or gets an 24 bit integer value in/from the buffer
xInt32 uint Sets or gets an 32 bit integer value in/from the buffer
xFloat float Sets or gets a float value in/from the buffer
xDouble double Sets or gets a double value in/from the buffer
xString string Sets or gets a string of xStringLen in/from the buffer
xPacked ASCII string Sets or gets a packed ascii string of xPackedASCLen in/from the buffer.

It very important to set the property xPackedASCIILen before accessing the property
xPackedASCII. The format PackedASCII stores 4 characters in three octets (24 bits),
using only 6 bits for each character. The xPackedASCIILen has to be set to the number
of octets used to store the string. Possible values are 3,6,9.. etc.. For instance a
xPackedASClILen of 3 allows to access a string of a length of four characters.

1st Byte 2nd Byte 3rd Byte

kﬁ/_/%(—}%/—%_/
1st Character 3rd Character
2nd Character 4th Character

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 56



Bo "t Embedded Solutions

HartTools 7.6

Methods

Declaration

Description

bool Lock()

The method is trying to lock against the access by other threads. However the method is waiting
for approximately 5 seconds. If the lock could not be placed in this time if will return false.

Note: Each lock has to be followed by a call of the Unlock method. Otherwise the system may be
blocked.

void Unlock ()

The method is removing a lock against concurrent access.

EN_LastError DoAction
(EN_Action Action, bool
wait)

The DoAction method is mainly used to handle the parameter properties.
EN Action Action
ACT_None (0)

Perform no action

Read the primary process variable and the unit (Command 1).
Update p01 properties.

Read the value for the current (4..20 mA) and the pv in %
(Command 2). Update p02 properties.

Read all available process variables (Command 3). Update p03
properties.

Read the message (Command 12). Update p12 property.

Read Tag, Descriptor and Date (Command 13). Update p13
properties.

Read sensor limit data (Command 14). Update p14 properties.
Read range data (Command 15). Update p15 properties.
Write message (Command 17). Use the p12 property.

Write Tag, Descriptor and Date (Command 18). Use p13
properties.

Write a new poll address into the device. Use NewPollAddress
for this action.

ACT RdPv (1)

ACT_RdCurrPerc(2)

ACT_RJAllPv(3)

ACT_RdMessage (4)

ACT_RdTagDescrDate (5)

ACT_RdSensLimits (6)
ACT_RdRange (7)
ACT_WrMessage (8)

ACT WrTagDescrData (9)

ACT_WrPollAddr (10)

Forces the control to forget the unique identifier of the most

ACT ResetStatus (11l i
_ResetStatus(11) recently connected HART device.

EN LastError Connect()

The method is retrieving the unique identifier (long address) from the Hart slave.
Note: This method waits for a response and does not generate an event.

void Disconnect()

The method deletes the internally stored unique identifier and discards all outstanding services.

EN_LastError DoCommand
(byte command, bool wait)

The method is performing a Hart command in the range 0 .. 255. For the data send with the
request it is using XReqLen and the internal data buffer with the data bytes.

EN_LastError DoCommand
(ushort command, bool wait)

The method is performing a 16 bit Hart command. For the data send with the request it is using
xRegLen and the internal data buffer with the data bytes.

void Close()

Has to be called when the application terminates.
Note: This method is simply setting the com port to 0 thus releasing the HartDLL.

string GetHartUnit
(byte UnitCode)

Returns the string associated with the 8 bit Hart unit code.

void FillBuffer
(byte Fillvalue)

Initialize all bytes in the internal buffer by the given FillValue.

void ValidateLicense
(string UserName,
string License)

Call this function firstly after construction to activate all internal functions.

If the parameter wait is set, the service will be completed if the
function returns. Otherwise the event function CommResult will
be called after completion.

Functions declared to return EN_LastError will return
ERR_Success if the operation was successfully completed.

Events

Declaration

Description

void CommResult
( CommResultEventArgs
CompletedService)

The DoAction method is mainly used to handle the parameter properties.
CommResultEventArgs CompletedService

Command Command used for the service
IsExtCommand True if extended command

LastError Code of last error

LastErrorText Text of last error

UsedAction Action triggered, if 0 no action was triggered.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 57



Bo "t Embedded Solutions

HartTools 7.6

SlaveDLL (Server + OSAL)

Like the HARTDLL for the master the SlaveDLL is providing
rudimentary services for the handling of the Hart protocol by a
slave implementation.

However, there are also some differences in the
implementation. In the following the term channel is missing. It
was replaced by the term channel.

Another issue is the connection. No connection services are
provided because the slave does not have to handle any
connection oriented details.

Functions

Declaration

’Description

Control

void BHS1lv ValidateLicense
(const char* userName,
const char* license)

The first call into the DLL should be a call to this function passing the correct
license key and the user name to the software. The user name and the licensee
code is provided by the User License Certificate.

signed int BHS1lv_OpenChannel
(unsigned int comPort,
unsigned int baudRate)

The function allocates the selected com port if possible and starts its own working
thread for accessing Hart services. The value which is returned is a handle
(channel) which has to be passed to all functions which are requesting a service.
If it was not possible to open the com port the function is returning
INVALID_SLV_HANDLE to indicate the error. The com port number is limited
to the range of 1 .. 255.

void BHS1lv_CloseChannel
(signed int channel)

It is required to call this function at least when the application is terminating.

void BHS1lv_GetCommConfig
(signed int channel,
T_strSlvCommSettings* config)

The function copies the configuration data to a data structure provided by the
caller.

void BHS1lv_SetCommConfig
(signed int channel,
T_strSlvCommSettings* config)

The function is setting all details required for the configuration. The data is passed
in a structure provided by the caller.

void BHS1lv_RegisterEventCallback

(signed int channel,

void (__stdcallx*
HandleServiceEvent)

Register a function which is called when any requested service is completed. The
service handle of the service is passed to the called CB function.
HandleServiceEvent is the pointer to the handling function which is provided by
the user.

(signed int channel, The parameter usEvent may have the values NONE, REQUEST_RECEIVED or
unsigned short event, BURST_REQUIRED. The parameter channel is passed to the application to allow
unsigned int service, the support of more than one communication channel in one callback.
unsigned int data))

BHS1lv_SetEventFlags Set the event flags mask.
(signed int channel,

unsigned short eventFlags);

void BHS1lv_ClearEventCallback
(signed int channel)

Deletes a previously registered callback. After a call of this function no more
callbacks to HandleServiceEvent will occur.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions 58



BO"t Embedded Solutions HartTools 7.6

Declaration Description
Operation
signed int BHS1lv_GetRequest The function is used for polling to get an indication if a master request was
(signed int channel, received.
i *
uns’.'gned short <.:°mmand’ channel | The handle which was returned by the OpenChannel function
unsigned short* indInfo,
unsigned char* datalen, command |Return the command via this pointer.
unsigned char* bytesOfData); indinfo |Get additional info about the request.
dataLen [Returns the number of payload bytes.
bytesOfData|Returns the payload data.
The function returns a service handle if successful or INVALID_SLV_HANDLE
if there was an error.
void BHS1lv_PutResponse Provides all information to build the response for the recently received request.
(s.lgned .mt Cham.lel ! channel | The handle which was returned by the OpenChannel function
signed int service,
unsigned char dataLen, service|The handle returned by the GetRequest function.
unsigned char* bytesOfData, datalen [Number of bytes for payload data
unsigned char responsel,
unsigned char response2) ; bytesOfData |Byte array for payload data
responsel|Response code 1
response2 |Response code 2
Decoding
unsigned char BHSlv_PickInt8 Return the value of the byte in the byte array buffer pointed to by dataRef at the
(unsigned char offset, position offset.
unsigned char* dataRef)
unsigned short BHS1lv_PickIntlé Return the value of the integer 16 from the byte array buffer pointed to by dataRef
(unsigned char offset, at the position offset. Assume that the most significant byte is the first if endian is
unsigned char* dataRef, MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
unsigned long BHSlv_ PickInt24 Return the value of the integer 24 from the byte array buffer pointed to by dtaRef
(unsigned char offset, at the position offset. Assume that the most significant byte is the first if endian is
unsigned char¥* dataRef, MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
unsigned long BHSlv_ PickInt32 Return the value of the integer 32 from the byte array buffer pointed to by dataRef
(unsigned char offset, at the position offset. Assume that the most significant byte is the first if endian is
unsigned char¥* dataRef, MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
float BHSlv_PickFloat Return the value of the single precision IEEE754 number from the byte array
(unsigned char offset, buffer pointed to by dataRef at the position offset. Assume that the most
unsigned char* dataRef, significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
double BHSlv_PickDouble Return the value of the double precision IEEE754 number from the byte array
(unsigned char offset, buffer pointed to by dataRef at the position offset. Assume that the most
unsigned char* dataRef, significant byte is the first if endian is MSB_FIRST(0), which is the Hart standard.
unsigned char endian)
void BHSlv_PickPackedASCII Generate a string and copy it to the buffer pointed to by sh. The final string should
(unsigned char* sb, have the length stringLen. The packedASCII source is a set of bytes in the byte
unsigned char stringlen, array buffer pointed to by dataRef.
unsigned char offset, Note: The string length has to by a multiple of 4 while the number of
unsigned char* dataRef) packedASCII bytes is a multiple of 3.
void BHS1lv_PickOctets Copy a number (numOctets) of bytes from the byte array buffer pointed to by
(unsigned char* dataDestination, dataSource to the user buffer pointed to by dataDestination.
unsigned char numOctets,
unsigned char offset,
unsigned char¥* dataSource)
void BHSlv_PickString This function does the same as BHDrv_PickOctets.
(unsigned char* sb,
unsigned char stringlen,
unsigned char offset,
unsigned char* dataRef)

HartTools 7.6.0 / 15.8.2023 Detailed Descriptions 59



Bo "t Embedded Solutions

HartTools 7.6

Declaration Description |
Encoding
void BHSlv_PutInt8 Insert an integer 8 into the byte array buffer pointed to by dataRef starting at the
(unsigned char data, position offset.

unsigned char offset,

unsigned char* dataRef)
void BHSlv_PutIntlé Insert an integer 16 into the byte array buffer pointed to by dataRef starting at the
(unsigned short data, position offset. Start with the most significant byte if endian is MSB_FIRST(0),
unsigned char offset, which is the Hart standard.

unsigned char* dataRef,

unsigned char endian)
void BHSlv_PutInt24 Insert an integer 24 into the byte array buffer pointed to by dataRef starting at the
(unsigned long data, position offset. Start with the most significant byte if endian is MSB_FIRST(0),
unsigned char offset, which is the Hart standard.

unsigned char* dataRef,

unsigned char endian)

void BHS1lv_PutInt32 Insert an integer 32 into the byte array buffer pointed to by dataRef starting at the
(unsigned long data, position offset. Start with the most significant byte if endian is MSB_FIRST(0),
unsigned char offset, which is the Hart standard.

unsigned char* dataRef,

unsigned char endian)

void BHSlv_PutFloat Insert a single precision IEEE 754 float value into the byte array buffer pointed to
(float data, by dataRef starting at the position offset. Start with the most significant byte if
unsigned char offset, endian is MSB_FIRST(0), which is the Hart standard.

unsigned char* dataRef,

unsigned char endian)

void BHS1lv_PutDouble Insert a double precision IEEE 754 float value into the byte array buffer pointed to
(double data, by dataRef starting at the position offset. Start with the most significant byte if
unsigned char offset, endian is MSB_FIRST(0), which is the Hart standard.

unsigned char* dataRef,

unsigned char endian)

void BHS1lv_PutPackedASCII Insert a string of the length of sLen in packed ASCII format into the byte array
(unsigned char* sb, buffer pointed to by dataRef starting at the position offset.

unsigned char sLen,

unsigned char offset,

unsigned char* dataRef)

void BHS1lv_PutOctets Copy a number of dataLen bytes into the byte array buffer pointed to by
(unsigned char* dataSource, dataDestination starting at the position offset.

unsigned char datalen,

unsigned char offset,

unsigned char* dataDestination)

void BHSlv_PutString This function does the same as BHSIv_PutOctets.

(unsigned char* sb,

unsigned char sLen,

unsigned char offset,

unsigned char* dataDestination)

Table 4: SlaveDLL, List of Functions

HartTools 7.

6.0 / 15.8.2023

Detailed Descriptions 60



Bo "t Embedded Solutions

HartTools 7.6

SlaveX (Server)

SlaveX is providing a small set of objects used to build a
command interpreter easily and quickly.
A Hart slave is basically implementing a command interpreter

for the Hart protocol. This is based on the use of the Hart
communication services provided in the object HartSlave.

CSlaveX
Properties
Name Type Acc |Description
IsValidChannel bool RO Returns true if there is a valid com port adressed by the channel.
ComPort byte Returns the comport number.
Status EN_Status Returns the status.
EN_Status : int
{
IDLE = O,
READY = 1,
WAIT RESPONSE = 2,
DISABLED = 3,
UNKNOWN = -1
}
PrintCallback IntPtr WO Sets the pointer to a print callback function.
DataBase CDhataBase|RO Returns a reference to the database of the component.
Methods
Declaration Description
void Start(int comPort, int baudRate) Starts the simulation at a defined com port and a baudrate between 1200 to

115200 Bits/s

void Configure ()

Sets up internal data of the component using the static class CDataBase.

void Enable ()

Enables the component.

void Disable()

Disables the component.

CRequest GetRequest()

Returns an instance of the CRequest class if a request was detected by the
communication layers.

void PutResponse (CResponse reponse, Accepts the response to be sent and the HART device status.
byte devstatus)
void Print (byte row, string text) Print a text on the debug output of the client if any is provided.
CRequest

The object is passed to the command interpreter when a Hart
command was received by the communication DLL.

Properties
Name Type |Acc |Description
Command ushort |RO The command that was passed with the request.
Len byte Number of bytes of productive data.
Data byte[] Returns an array of bytes with the payload data of the request.
Flags ushort Returns a bit stream which is not yet defined.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions

61




Bo "t Embedded Solutions

HartTools 7.6

Methods

Declaration

Description

byte GetByte (byte offset)

Returns the value of a 8 bit unsigned integer at the position (offset) in the data
of the request.

ushort GetIntlé6 (byte offset)

Returns the value of a 16 bit unsigned integer at the position (offset) in the
data of the request.

ulong GetInt24 (byte offset)

Returns the value of a 24 bit unsigned integer at the position (offset) in the
data of the request.

float GetFloat (byte offset)

Returns the value of a 32 bit float as IEEE754 at the position (offset) in the
data of the request.

string GetPackedASCII (byte offset,
byte len)

Returns the decoded string from a PackedASCII string at the position (offset)
in the data of the request. len is the number of bytes of the PackedASCII
coded string. Note: len has to be an integer multiple of 3, while the length of
the resulting string is a multiple of 4.

string GetString(byte offset,

Returns the string with length (len) at the position (offset) in the data of the

byte len) request.
CResponse
Properties
Name Type |Acc |[Description
CmdResultCode byte R/W Gets or sets the cmd reponse code.
DeviceStatus byte Gets or sets the Hart device status.
DataLength byte RO Gets the number of bytes of payload data in the response.
Data byte[] Gets an array of bytes with the payload data for the response.
Methods
Declaration Description
void SetByte(byte offset, byte value) Sets the value of an 8 bit unsigned integer at the position (offset) in the data

of the response.

void SetIntl6 (byte offset, ushort value)

Sets the value of a 16 bit unsigned integer at the position (offset) in the data
of the response.

void SetInt24 (byte offset, uint value)

Sets the value of a 24 bit unsigned integer at the position (offset) in the data
of the response.

void SetInt32 (byte offset, uint value)

Sets the value of a 32 bit unsigned integer at the position (offset) in the data
of the response.

void SetFloat (byte offset, float value)

Sets the value of a 32 bit float at the position (offset) in the data of the
response.

void SetPackedASCII (byte offset, Convert the string (value) into PackedASCII-format and insert the resulting
string value, bytes at the position (offset) in the data of the response. len is the number of
byte len) PackedASCII bytes to be inserted. It should be an integer multiple of 3. If this
is not the case it is reduced to the next lower integer multiple of 3.
The length of the string (val) should be an integer multiple of 4 following the
formula:
value.length=1len/3* 4
if value.length is shorter than the required length the string is filled by * *. If it
is longer the string is truncated.
Example: The Hart short tag name has to have 8 characters. Therefore len has
to be 6.
void SetString(byte offset, Insert the bytes of a ISO Latin-1 string (val) with the length len at the position
string value, (offset) in the data of the response. If the string is shorter than len it is filled
byte len) by char(0). If the string is longer than len it is truncated.

HartTools 7.6.0 / 15.8.2023

Detailed Descriptions

62



Bo "t Embedded Solutions

HartTools 7.6

Additional Information

Structures

Type

| Name

Description

T_strConfiguration

unsigned int

uiBaudRate

Baudrate as defined in winbase.h
CBR_1200

CBR_2400

CBR_4800

CBR_9600

CBR_19200

CBR_38400

CBR_57600

CBR_115200

Default: CBR_1200

unsigned char

ucNumPreambles

Number of preambles used for a request (0..22)
Default: 5

unsigned char

ucNumRetries

Number of retries if device response is erroneous (0..3)
Default: 2

unsigned char

ucRetryIfBusy

0: Do not retry if device is responding with busy code

1..255: Retry the command if device is responding with
busy code. The number of retries is reflected in the

confirmation as ucUsedRetries.

Default: 1

unsigned char

ucInitialMasterRole

0: Primary master
1: Secondary master
Default: 0

unsigned char ucReserved Not used (former addressing mode)
0: Use handshake signals
unsigned char ucDoNotUseRtsDtr 1: Do not use handshake signals
Default: 0
unsigned short usAddTimeOut Additional time out to wait for a slave response in ms. Typical 100, 200 etc.
Default: 0
unsigned short usAddGapTime Additional time for gap between characters in ms. Typical 5, 10 etc.
Default: 0
Additional delay before Rts is switched off (carrier off) in ms. Typical 1, 2, 5,
unsigned short usAddRtsOffDelay 10 etc.
Default: 0
0: Normal sending
unsigned char bSendJabberOctet 1: Append ucJabberOctet to each frame
Default: 0
unsigned char ucJabberOctet Value of the jabber octet
unsigned char bGenParityError Generate a parity error on a particular position
unsigned char ucParityErrorPos Number of the byte at which the error should be injected
unsigned char bHartEnabled O:Hannotmnmng
1: Hart protocol active
unsigned char bRecJabberOctet 0- Ignore jabber octets

1: Report jabber octets to the monitor

T_strRunTimelnfo

unsigned char bActualMaster 0: Primary Master

1: Secondary Master
unsigned char bFifoDetected >0: More than 3 characters are received at once
unsigned char ucBlockSize Number of characters received at once
unsigned char ucReserved

HartTools 7.6.0 / 15.8.2023

Additional Information 63



Bo "t Embedded Solutions

HartTools 7.6

Type | Name Description
T_strConnection
unsigned char ucManId Manufacturer id as defined by the Hart Communication Foundation
unsigned char ucDevId Vendor's device id
unsigned char ucNumPreambs Number of preambles defined by the device
unsigned char ucCmdRevNum Command set revision number as defined by Hart
unsigned char ucSpecRevCode Device specific revision code
unsigned char ucSwRev Software revision code
(0..255)
unsigned char ucHwRev Hardware revision code
unsigned char ucHartFlags The flags as defined by Hart
unsigned char ucError Service completion code
SRV_EMPTY(0) | Not active
SRV_NO_DEV_RESP(1) | No device response
SRV_COMM_ERR(2) | There was some error
(too few data e.g.)
SRV_INVALID_HANDLE(3) | Service handle is invalid
SRV_IN_PROGRESS(4) | Service working
SRV_SUCCESSFUL(5) | Service successfully completed
SRV_RESOURCE_ERROR(6) | Out of memory
SRV_TOO_FEW_DATA_BYTES(7) | Used for cmd 31
unsigned char ucRespCodel Response code 1 as defined by the Hart specification
unsigned char ucRespCode2 Response code 2 as defined by the Hart specification
unsigned char ucUsedRetries Number of retries which were used for completion

unsigned char bDeviceInBurstMode

0: Normal mode
1: Device is in burst mode

unsigned char ucExtDevStatus Extended device status

unsigned short usCfgChCount Configuration changed counter
unsigned char ucMinNumPreambs Minimum number of preambles
unsigned char ucMaxNumDVs Maximum number of device variables
unsigned short usManulID Extended manufacturer ID
unsigned short usLabDistID Extended label distributor ID
unsigned char ucDevProfile Device profile

unsigned char ucReserved -I-

unsigned char aucUniquelID[5] Unique identifier

T_strCyclicData

unsigned long ulTimeStamp Time in ms since recording of burst messages was started
unsigned char ucCmd Command of the received frame

unsigned char ucRspl Device response code 1

unsigned char ucRsp2 Device response code 2

unsigned char ucDataLen Number of bytes in productive data

unsigned char aucData[255] Productive data of the burst message

HartTools 7.6.0 / 15.8.2023

Additional Information

64



Bo "t Embedded Solutions

HartTools 7.6

Type | Name Description
T_strConfirmation
unsigned char ucCmd Command which was executed
unsigned char ucRespCodel Response code 1 as defined by the Hart specification
unsigned char ucRespCode2 Response code 2 as defined by the Hart specification
unsigned char ucError Service completion code
SRV_EMPTY(0) | Not active
SRV_NO_DEV_RESP(1) | No device response
SRV_COMM_ERR(2) | There was some error
(too few data e.g.)
SRV_INVALID_HANDLE(3) | Service handle is invalid
SRV_IN_PROGRESS(4) | Service working
SRV_SUCCESSFUL(5) | Service successfully completed
SRV_RESOURCE_ERROR(6) | Out of memory
SRV_TOO_FEW_DATA BYTES(7) | Used for cmd 31
unsigned char ucUsedRetries Number of retries which were used for completion

unsigned char bDeviceInBurstMode 0: Normal mode
1: Device is in burst mode

unsigned short | usDuration Time for service execution in ms

unsigned long dwAppKey Is returned by the FetchConfirmation function as it was passed to the
DoCommand function.

unsigned short | usExtCmd Extended cmd number

unsigned char ucReserved Reserved for future use

unsigned char ucLen Number of response data bytes (octets)

unsigned char aucData Response data bytes (DATA_BUF_LEN = 255)

[DATA BUF_LEN]

T_strSlaveDynamicValues

float fPercent Actual percent of range

float fCurrent Actual current value as ma

unsigned char ucUnitCodePV1 Hart unit code for PV1

unsigned char ucUnitCodePV2 Hart unit code for PV2

unsigned char ucUnitCodePV3 Hart unit code for PV3

unsigned char ucUnitCodePV4 Hart unit code for PV4

float fPV1 Value of PV1

float £PV2 Value of PV2

float £PV3 Value of PV3

float £fPV4 Value of PV4

unsigned char bDeviceMalfunction Signals device mal function

unsigned char bCfgChangedPrimMaster Configuration change flag for primary master

unsigned char bCfgChangedScndMaster Configuration change flag for primary master

unsigned char bColdStartPrimMaster Cold start flag for primary master

unsigned char bColdStartScndMaster Cold start flag for secondary master

unsigned char bMoreStatusAvail Flags more status available (see command 48)

unsigned char bLoopCurrentFixed Signals fixed current mode active

unsigned char bLoopCurrentSaturated Signals current output saturated

unsigned char bNonPrimVarOutLimits Signals none primary variable out of limits

unsigned char bPrimVarOutLimits Signals primary variable out of limits

unsigned char bUseExtValues Indication to the slave simulation to use the values of this structure instead of
its own.

unsigned char ucReservedl Reserved for future use

HartTools 7.6.0 / 15.8.2023

Additional Information

65



Bo "t Embedded Solutions

HartTools 7.6

Type

| Name

Description

T_strSlaveConfiguration

unsigned char ucManufacturerID Manufacturer’s identifier
unsigned char ucDevicelID Device identifier
unsigned char ucNumPreambles Number of preambles needed in a request (2..20, recommended: 2)
unsigned char ucCmdSetRevision Hart compatibility version
(5..7, recommended: 5)
unsigned char ucTransmSpecRev Transmitter specific revision
unsigned char ucSoftwareRevision Software revision number
unsigned char ucHardwareRevision Hardware revision number
unsigned char ucReservedl Reserved for future use
unsigned char ucDevNuml Device number [LSB]
unsigned char ucDevNum2 Device number [LSB+1]
unsigned char ucDevNum3 Device number [LSB+2]
unsigned char ucReserved2 Reserved for future use
unsigned char aucShortTag[12] Tag name, 8 characters (see 3.3.2.1 Packed ASCII Coding for possible
characters)
unsigned char aucLongTag[36] Long tag name, 32 characters iso latin 1
unsigned char ucPollAddress Slave polling address
unsigned char ucNumberOfPVs Defines the number of variables to be sent with command 3
unsigned char ucReserved3 Reserved for future use
unsigned char ucReserved4 Reserved for future use
unsigned char aucMessage[36] Message, 32 characters coded in packed ASCII
unsigned char aucDescription[20] Description, 16 characters coded in packed ASCII
unsigned char ucDay Day of Hart date (1..31)
unsigned char ucMonth Month of Hart date (1..12)
unsigned short usYear Year of Hart date (1900..2155)

HartTools 7.6.0 / 15.8.2023

Additional Information

66



Bo "t Embedded Solutions

HartTools 7.6

Constants

Name ’ Value ’ Description
Service Completion Codes
SRV_EMPTY 0x00 Service not active
SRV_NO_DEV_RESP 0x01 Device did not respond
SRV_COMM ERR 0x02 There was a communication error (too few data e.g.)
SRV_INVALID HANDLE 0x03 Service handle not valid
SRV_IN PROGRESS 0x04 Service not yet completed
SRV_SUCCESSFUL 0x05 Service successfully completed
SRV_RESOURCE_ERROR 0x06 Out of memory
SRV_TOO_FEW_DATA BYTES | 0x07 Used with cmd 31
Values of Handles
INVALID_DRV_HANDLE -1 Driver handle not valid
INVALID_SRV_HANDLE -1 Service handle not valid
Endian
MSB_FIRST 0x00 Big Endian (Hart standard): Most Significant Byte first
LSB_FIRST 0x01 Little Endian: Least Significant Byte first
Wait Options
DRV_NO_WAIT 0x00 User will poll for the completion of service
DRV_WAIT 0x01 The function returns if service is completed
Slave Modes
SLAVE DISABLED 0x00 Slave emulation is not active
SLAVE_ENABLED 0x01 Slave emulation is active
Cyclic Data Handling
CYCDAT_OK 0x00 Cyclic data available
CYCDAT_NO_DATA 0x01 Cyclic data not (yet) available
Boolean Values
T_FALSE 0x00 True
T_TRUE 0x01 False
Events
NONE 0x00
CONFIRMATION 0x01
BURST_INDICATION 0x02
REQUEST 0x03

HartTools 7.6.0 / 15.8.2023 Additional Information 67



BO"t Embedded Solutions HartTools 7.6

Hart at a Glance

Frame Coding

Number payload bytes + Data may contain response codes (ack,
response bytes + extended back) and/or the extended command (stx,
command bytes ack, back).

The Delimiter leads to the Byte Count

1 or 5 Bytes 0-3 Bytes v
| DEL | ADDRESS |ExpBytes |CMD [CNT | DATA | CHK |

A
\ Normally not N (+2) (+2) Bytes The Byte Count leads to the Check Byte
used. N Bytes

Short Address
Reponse Data Normal: [ RSP1 | RsP2 | PAYLOAD |

_|__ 6 Bit Polling Address

Field Device in Burst Mode L Add
ong ress
Master Address Unique for 6 bit

0 Secondary Master | MAN | DEV | UNIQUE ID | manufacturer ID and
1 Primary Master

Reponse Data Cmd 31: [ RsP1 | Rsp2 | EXTCMD | PAYLOAD |
2 Bytes N Bytes

Delimiter

p— 8 bit device ID.
5 Bytes
Frame Type dd Note: In this fi th bles (0xff), which
First Address Byte \ ote: In this figure the preambles (0xff), whic
1BACK (Burst Frame) y Device ID are sent before the delimiter are not shown
2 STX (Master to Field Device) because the preambles are considered to be a
6 ACK (Field Device to Master) part of the physical layer.
Physical Layer Type 0 Asynchronous _|__
1 Synchronous 6 Least Significant Bits of Manufacturer 1D
Number of Expansion Bytes Field Device in Burst Mode
Address Type 0 Polling (1 Byte) Address Master Address 0 Secondary Master
1 Unique (5 Byte) Address 1 Primary Master

Figure 14: The Basic Coding of a Hart Frame

The figure above is giving an overview of the coding of a Hart
frame. Usually Hart services are composed of a request (stx) by
the master followed the response (ack) of a slave. Bursts (back)
are frames looking like a response (including response codes)
but sent by the slave without any request. The slave is sending
these frames in burst mode within defined time slots following
the rules of the protocol specification. In fact Hart is a token
passing protocol which allows also the slave to be a token
holder and send burst frames.

The following chapter is showing a list of Hart commands which
are used very often. The list is showing the major differences
between Hart 5.3, Hart 6 and Hart 7.4.

New items in Hart 6 are marked with yellow color while new
items of Hart 7.4 are marked by blue color.

However, the following is not replacing any specification and is
not showing the details which are needed for an
implementation. The details has to be taken from the Hart
specifications which are provided by the FieldComm Group:
Hart Specifications.

That the listed commands are most commonly used is not the
opinion of the HCF but the opinion of the author of this
document.

HartTools 7.6.0 / 15.8.2023 Additional Information 68


https://www.fieldcommgroup.org/hart-specifications

Bo "t Embedded Solutions

HartTools 7.6

Commonly Used Commands

No ‘Title

‘Req uest Data

‘Response Data

Universal

Read Unique
Identifier

00

None

int8

254

Manufacturer ID

Short device ID

Number preambles request

Hart revision

Device revision

Software revision

Hw rev and signaling code

Flags

int24

DevUniquelD

S",S © m‘\l‘m‘m‘h‘wlmlplo

int8

Number preambles response

Maximum number device variables

=
~

intl6

Configuration change counter

[N
o

int8

Extended device status

=
~

int16

Extended manufacturer code

=
©

Extended label distributor code

N
[y

int8

Device profile

Read Primary
Variable

01

None

int8

PV Units

float

Primary variable

Read Current and
Percent of Range

02

None

float

Current

float

Percent of range

Read Current and
Dyn. Variables

03

None

float

Current

int8

PV1 units code

float

PV1 value

ol (d|lO|IFR|[O|F—]|O

int8

PV2 units code

[
o

float

PV2 value

iR
~

int8

PV3 units code

=
[3)]

float

PV3 value

int8

PV4 units code

float

PV4 value

Write Polling
Address

06

int8

Polling Address

int8

PV Units

int8

Loop current mode

int8

Loop current mode

Read Loop
Configuration

07

None

int8

Polling address

Loop current mode

Read Dyn. Vars
Classification

08

None

N =
ANREREREEE

int8

PV1 classification

PV2 classification

PV3 classification

PV4 classification

HartTools 7.6.0 / 15.8.2023

Additional Information

69



Bo "t Embedded Solutions

HartTools 7.6

No ‘Title Request Data ‘Response Data
Universal
09 |Read Device 0 int8 | Slot0: Device variable code 0 int8 |Extended device status
Variables with |1 ] Slot1: Device variable code 1 |Slot0: Device variable properties
SES e T Slot2: Device variable code 1 int8 [Device variable code
T Slot3: Device variable code 2 Device variable classification
4 int8 |Slot4: Device variable code 3 Device variable units code
T Slot5: Device variable code 4 float |Device variable value
T Slot6: Device variable code 8 int8 | Device variable status
T Slot7: Device variable code 9 | struct|Slotl: Device variable properties
117 | Slot2: Device variable properties
25 Slot3: Device variable properties
|33 struct Slot4: Device variable properties
41 Slot5: Device variable properties
E Slot6: Device variable properties
E Slot7: Device variable properties

65 time | Time stamp slotO

11

Read Unique ID
by Short Tag

6 bytes = 8 characters

0 pac6 [ Tag name (packed ascii)

Same as command O read unique identifier

12 |Read Message None 0 | pac24 |Message (packed ascii)
24 bytes = 32 characters

13 |Read Tag, None 0 pac6 [Short tag (packed ascii)
Descriptor, 6 bytes = 8 characters
Date 6 | pacl2 |Descriptor (packed ascii)

12 bytes = 16 characters
18 int8 Day
F Month
E Year (offset to 1900)

14 |Read Primary None 0 int24 | Transducer serial number
Variable 3| int8|Units code
g;:giﬁ:iizn EX float {Upper transducer limit

| 8 | Lower transducer limit
12 Minimum span
15 |Read Device None | 0 | int8 |Alarm selection code
Information 1 Transfer function code
T Units code
3 float [PV upper range value (for 20 mA)
T PV lower range value (for 4 mA)
? PV damping value
115 int8 |Write protect code
16 Reserved, must be set to 250
? PV analog channel flags

16 |[Read Ass. Num None 0 int24 |Final assembly number

17 |[Write Message Same as response command 12 Same as response command 12

18 |Write Tag, Same as response command 13 Same as response command 13
Descriptor,

Date
19 |Write Ass. Num Same as response command 16 Same as response command 16

20

Read Long Tag

None

0 ‘ str32 |Long tag: 32 ISO Latin-1 characters

21

Read Unique ID
by Long Tag

0 | str32(Long tag: 32 ISO Latin-1 characters

Same as command 0 read unique identifier

22

Write Long Tag

Same as response command 20

Same as response command 20

HartTools 7.6.0 / 15.8.2023

Additional Information

70



BO"t Embedded Solutions HartTools 7.6

No ‘Title ‘Req uest Data ‘Response Data
Universal / Common Practice
38 |[Reset Config None None
Changed Flag
0 ’ intl6 IConfiguration change counter 0 I intl6 |Configurati0n change counter
48 |[Read Additional |None
Device Status
0 | int8[5] |Transmitter specific status 0 | int8[5] | Transmitter specific status
6 | int8[2] |Operating mode
| 6 | int8 |Extended device status 6 int8 |Extended device status
7 Device operating mode 7 Device operating mode
8 | int8[3] |Analog output status
8 int8 |Standard status 0 8 int8 |Standard status 0
|9 | Standard status 1 9 Standard status 1
W Analog channel saturated 10 Analog channel saturated
11| int8[3] |Analog output fixed
|11 | int8 |Standard status 2 11 int8 |Standard status 2
12 Standard status 3 12 Standard status 3
? Analog channel fixed 13 Analog channel fixed
14| int8[3] | Transmitter specific status
14 |int8[10] |Transmitter specific status 14 | int8[10] | Transmitter specific status
Common Practice
33 |Read Device 0 int8 |Slot0: Device variable code 0 |Slot0: Device variable properties
Variables I Slot1: Device variable code 0 int8 |Device variable code
| 2 | Slot2: Device variable code 1 Device variable units code
3 Slot3: Device variable code 2 float | Device variable value
| 6 | struct Slotl: Device variable properties
112 | Slot2: Device variable properties
18 Slot3: Device variable properties
34 [Write Prim. Var. | 0 | float|PV 1damping value 0 float [PV 1 damping value
Damping
35 |Write Prim. Var. | 0 int8 |Units code 0 int8 [Units code
Range Values 1 | float|Upper range value 1 float |Upper range value
|5 | Lower range value 5 Lower range value
36 |Set Prim. Var. None None
Upper Range
37 |Set Prim. Var. None None
Lower Range
40 Enter/Exit 0 float |Current value 0 float |Actual current value
Fixed Current
42 |Device Reset None None
43 |Set Primary None None
Variable Zero
44 |\Write Prim. Var. | 0 int8 |PV 1 units code 0 int8 [PV 1 units code
Units
45 |Trim Prim. Var. 0 | float |Measured current value 0 float | Actual current value
Current Zero
46 |Trim Prim. Var. 0 | float|Measured current value 0 | float|Actual current value
Current Gain
50 |Read Dynamic None 0 int8 |PV 1 variable code
Variable 1] PV 2 variable code
Assignments Z PV 3 variable code
3 PV 4 variable code

HartTools 7.6.0 / 15.8.2023 Additional Information 71



Bo "t Embedded Solutions

HartTools 7.6

No ‘Title Request Data Response Data
Common Practice
51 |Write Dynamic 0 int8 |PV 1 variable code 0 int8 [PV 1 variable code
Var::l.able 1] PV 2 variable code 1 PV 2 variable code
Assignments T PV 3 variable code 2 PV 3 variable code
IEN PV 4 variable code 3 PV 4 variable code
54 |Read Device int8 | Device variable code 0 int8 | Device variable code
Variable 1 | int24 [Sensor serial number
Information 4 int8 |Units code
5 float | Variable upper limit
T Variable lower limit
E Variable damping
17 Variable minimum span
21 int8 [Variable classification
Z Variable family
23 time |Acquisition period
27 bin8 |Variable properties
71 |Lock Device 0 ’ int8 ‘Lock code 0| int8|Lock code
76 |Read Lock State |None 0 int8 [Lock status
78 |Read Aggregated 0 int8 |Number of commands requested 0 int8 |Extended device status
Commands 1 | str[]|Array of command requests 1 int8 [Number of commands requested
struct {
int16 command
int8 byteCount
int8[] requestData }
2 str[] |Array of command responses
struct {
int16 command
int8 byteCount
int8 responseCode
int8[] responseData }
792 Write Device | 0 | int8 | Device Variable Code 0 int8 | Device Variable Code
Variable |1 DV command code 1 DV command code
2 DV units code 2 DV units code
3 | float DV value 3 float |DV value
7 int8 [DV status 7 int8 |DV status
103 |Write Burst 0 int8 |Burst message 0 int8 |Burst message
Period | 1 | time|Update period 1| time|Update period
5 Maximum update period 5 Maximum update period
104 |Write Burst 0 int8 |Burst message 0 int8 |Burst message
Trigger T Trigger mode selection code 1 Trigger mode selection code
T Device variable classification for 2 Device variable classification for trigger
trigger level level
T Units code 8 Units code
4 float [ Trigger level 4 float | Trigger level

2 Used to simulate the value of a device variable

HartTools 7.6.0 / 15.8.2023

Additional Information

72




Bo "t Embedded Solutions

HartTools 7.6

No ‘Title Request Data Response Data
Common Practice
105|Read Burst Mode [None 0 int8 | Burst mode control code
Configuration 1 int8 |Burst command number
2 int8 (Burst command slot 0
3 int8 |Burst command slot 1
4 int8 |Burst command slot 2
5 int8 |Burst command slot 3
0 | int8 |Burst message 0 int8 |Burst mode control code
1 0x1f (31) command expansion
Z DV code slot0
| 3| DV code slotl
KX DV code slot2
5 DV code slot3
|6 | DV code slot4
|7 ] DV code slot5
E DV code slot6
19| DV code slot7
110 | Burst message
11 Maximum number of burst messages
12| int1l6 |[Extended command number
|14 | time |Update time
18 Maximum update time
122 | int8 |Burst trigger mode code
123 | DV classification for trigger value
24 Units code
25| float |trigger value
106|Flush Delayed None None
Responses
107 [Write Burst | 0 | int8 |DV code slot 0 0 int8 [DV code slot 0
Device Variables | ; | DV code slot 1 1 DV code slot 1
2 DV code slot 2 2 DV code slot 2
N DV code slot 3 3 DV code slot 3
4 int8 |DV code slot 4 4 int8 [DV code slot 4
T DV code slot 5 5 DV code slot 5
T DV code slot 6 6 DV code slot 6
z DV code slot 7 7 DV code slot 7
8 Burst message 8 Burst message
108|Write Burst Mode | 0 int8 | Command number for the burst 0 int8 |Command number of the burst
Command response response
109 |Burst Mode 0 int8 |Burst mode control code 0 int8 |Burst mode control code
Control
113 |Catch Device 0 int8 |Destination DV code 0 int8 | Destination DV code
Variable | 1| Capture mode code Capture mode code
T Source slave manufacturer ID 2 | int8[5] |Source slave address
T Source slave device type
2 int16 |Source slave expanded device type
4 | int8[3] |Source slave device ID
7 int8 |Source command number 7 int8 [Source command number
8 Source slot number 8 Source slot number
9 float |Shed time for this mapping 9 float |Shed time for this mapping
7 int8 |0x1f (31) command expansion 7 int8 |0x1f (31) command expansion
T Source slot number 8 Source slot number
9 float |Shed time for this mapping 9 float |Shed time for this mapping
13 int16 |Ext source command number 13| intl6 [Ext source command number

HartTools 7.6.0 / 15.8.2023

Additional Information

73



BO"I Embedded Solutions HartTools 7.6

No ‘Title ‘Req uest Data Response Data
Common Practice
114 |Read Caught 0 ’ int8 IDestination DV code 0 int8 [Destination DV code
Device Variable 1 Capture mode code
2 | int8[5] |Source slave address
| 7| int8 |Source command number
8 Source slot number
9 float |Shed time for this mapping
| 7| int8 |0x1f (31) command expansion
8 Source slot number
9 float [Shed time for this mapping
13| int16 |[Ext source command number
523 |Read Condensed | 0 | int8 |Starting index status map 0 int8 |Actual starting index
Status Mapping 1 Number of entries to read 1 Number of entries returned
LEREN 2 | int4[] |Status map codes array
524 |Write Condensed 0 int8 | Starting index status map 0 int8 | Actual starting index
Status Mapping | 1 | Number of entries to write 1 Number of entries returned
LEREN 2 | int4[] |Status map codes array 2 | int4[] |Status map codes array
525|Reset Condensed |None None
Status Map
526|Write Status 0 int8 |Status simulation mode 0 int8 |Status simulation mode
Simulation Mode
527|Simulate Status | 0 | int8|Status bitindex 0 int8 |Status bit index
Bit 1 Status bit value 1 Status bit value
Response Codes
As response code 1 is command specific it is documented
together with the command specifications. However response
code 2 is of general nature and contains 8 bit flags with the
following meaning.

Flag Number / Meaning Description

Bit #7 Field Device Malfunction The device has detected a hardware error or failure. Further information may be available
through the Read Additional Transmitter Status Command, #48.

Bit #6 Conﬁguration Changed A write or set command has been executed.

Bit #5 Cold Start Power has been removed and reapplied resulting in the reinstallations of the setup
information. The first command to recognize this condition will automatically reset this
flag. This flag may also be set following a Master Reset or a Self Test.

Bit #4 More Status Available More status information is available than can be returned in the Field Device Status.
Command #48, Read Additional Status Information, will provide this additional status
information.

Bit #3 Primary Variable Analog The analog and digital analog outputs for the Primary Variable are held at the requested

Output Fixed value. They will not respond to the applied process.

Bit #2 Primary Variable Analog The analog and digital analog outputs for the Primary Variable are beyond their limits and
Output Saturated no longer represent the true applied process.

Bit #1 Non Prima ry Variable Out of |The process applied to a sensor, other than that of the Primary Variable, is beyond the
operating limits of the device. The Read Additional Transmitter Status Command, #48,

Himits may be required to identify the variable.
Bit #0 Primary Variable Out of The process applied to the sensor for the Primary Variable is beyond the operating limits
Limits of the device.

HartTools 7.6.0 / 15.8.2023 Additional Information 74



BO"t Embedded Solutions HartTools 7.6

Data Types
Float IEEE 754

The following summarizes the IEEE 754 and recommends that
standards are referred to for implementation.

The floating point values passed by the protocol are based on
the IEEE 754 single precision floating point standard.

Data Byte #0 #1 #2 #3

SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

S - Sign of the mantissa; 1 = negative
E - Exponent; Biased by 127 decimal in two's complement format
M - Mantissa; 23 least significant bits, fractional portion

The value of the floating point number described above is
obtained by multiplying 2, raised to the power of the unbiased
exponent, by the 24-bit mantissa. The 24-bit mantissa is
composed of an assumed most significant bit of 1, a decimal
point following the 1, and the 23 bits of the mantissa.

S1.M - 2(E227)

The floating point parameters not used by a device will be filled
with 7F A0 00 00: Not-a-Number.

Double IEEE 754

The following summarizes the IEEE 754 and recommends that
standards are referred to for implementation.

The floating point values passed by the protocol are based on
the IEEE 754 single precision floating point standard.

Data Byte #0 #1 #2 #3
SEEEEEEE EEEEMMMM MMMMMMMM MMMMMMMM

Data Byte #4 #5 #6 #7
MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM

S - Sign of the mantissa; 1 = negative

E - Exponent; Biased by 1023 decimal in two's complement
format

M - Mantissa; 52 least significant bits, fractional portion

The value of the floating point number described above is
obtained by multiplying 2, raised to the power of the unbiased
exponent, by the 53-bit mantissa. The 53-bit mantissa is
composed of an assumed most significant bit of 1, a decimal
point following the 1, and the 52 bits of the mantissa.

S1.M _2(E—1023)

HartTools 7.6.0 / 15.8.2023 Additional Information 75



BO"t Embedded Solutions HartTools 7.6

Packed ASCII

The packed ASCII Format uses 6 Bit to encode a character.
Therefore 4 characters in the original string require 3 octets in
the resulting data. It is recommended to provide strings always
as a multiple ordinal of 4 characters

Construction of Packed-ASCII characters:

a) Truncate Bit #6 and #7 of each ASCII character.
b) Pack four, 6 bit-ASCII characters into three bytes.
Reconstruction of ASCII characters:

a) Unpack the four, 6-bit ASCII characters.

b) Place the complement of Bit #5 of each unpacked, 6-bit
ASCII character into Bit #6.

c) Set Bit #7 of each of the unpacked ASCII characters to
zero.

d) The Packed ASCII code (hexadecimal) allows the
representation of the following characters.

CHAR | CODE | CHAR | CODE | CHAR CODE | CHAR | CODE
@ 00 P 10 Space | 20 0 30
A 01 Q 11 ! 21 1 31
B 02 R 12 " 22 2 32
C 03 S 13 # 23 3 33
D 04 T 14 $ 24 4 34
E 05 U 15 % 25 5 35
F 06 v 16 & 26 6 36
G 07 W 17 ! 27 7 37
H 08 X 18 ( 28 8 38
I 09 Y 19 ) 29 9 39
J 0A Z 1A * 2A : 3A
K 0B [ 1B + 2B ; 3B
L |oC \ | 1C , 2C < | 3C
M | 0D ] 1D - 2D = | 3D
N OE A 1E . 2E > 3E
o OF 1F / 2F ? 3F

e) Note: The implementation of the function is assuming
that the packed ascii string should be an ordinal multiple
of 3. If the length of the passed string is not an ordinal
multiple of 4 the missing packed ascii characters are
replaced by spaces.

HartTools 7.6.0 / 15.8.2023 Additional Information 76



tnutomotion
O" Embedded Solutions

HartTools 7.6

Appendix

Abbreviations

Abbreviation

Description

HCF

Hart Communication Foundation

DLL

Windows: Dynamic Link Library
OSI-ISO: Data Link Layer

HAL

Hardware Abstraction Layer

HART

Highway Addressable Remote Transducer

See also:
http://en.wikipedia.org/wiki/Highway_Addressable_Remote_Transducer_Protocol

HMI

Human Machine Interface

ISO

International Standards Organisation

MODEM

MOdulator DEModulator

NV-memory

Non-Volatile memory

OSAL

Operating System Abstraction Layer

OSI

Open Systems Interconnection

UART

Universal Asynchronous Receiver Transmitter

HartTools 7.6.0 / 15.8.2023

Appendix

77



	Overview
	Installation
	Application Examples
	Directory Structure

	Getting Started
	Debugging Example Projects
	Slave Simulation with FrameAlyst
	Slave Simulation with Test Client
	HartDLL (Client + OSAL)
	Service Processing Flow Diagram
	Principle of Operation
	Excel
	Modules


	HartX (Client)
	Service Processing Flow Diagram
	Principle of Operation
	Visual Studio
	Excel

	SlaveDLL (Server + OSAL)
	SlaveX (Server)
	Test Client
	Slave Simulation
	Using FrameAlyst as Debugging Master

	User Slave DLL in FrameAlyst

	Python Example
	Visual Studio Code Example

	Detailed Descriptions
	FrameAlyst
	Features
	Functions and Menus
	Common Elements
	Display Items (Frames)
	File Menu
	Home Menu
	Hart Commands Menu
	Trigger/Filter Menu
	Slave Menu
	Options Menu
	Test/Diagnostic Menu

	Additional Features
	Store in Xml and Html Format
	Xml Format Example
	Html Output Example

	Services Menu
	Toggle Burst Mode
	Set Poll Address
	Search Device
	Edit/Set Long Tag
	Activate Hart 6/7
	Handle Device Data
	Set Tag, Descriptor and Date
	Set Range
	Edit and Run Scripts

	Decoding Data in a Frame
	Copy to SendAnyFrame
	Copy Bytes to the Clipboard
	Editing Data Syntax
	Displaying the Slave Emulation
	Handling of Erroneous Frames
	Setting Custom Colors
	Frame Display Examples


	HartDLL (Client + OSAL)
	Distribution of Applications
	Functions

	HartX (Client)
	Distribution of Applications
	CHartX
	Properties
	Methods
	Events


	SlaveDLL (Server + OSAL)
	Functions

	SlaveX (Server)
	CSlaveX
	Properties
	Methods

	CRequest
	Properties
	Methods

	CResponse
	Properties
	Methods



	Additional Information
	Structures
	Constants
	Hart at a Glance
	Frame Coding
	Commonly Used Commands
	Response Codes

	Data Types
	Float IEEE 754
	Double IEEE 754

	Packed ASCII


	Appendix
	Abbreviations


